Digital Signatures in Bitcoin - Bitcoin Wiki

Why i’m bullish on Zilliqa (long read)

Edit: TL;DR added in the comments
 
Hey all, I've been researching coins since 2017 and have gone through 100s of them in the last 3 years. I got introduced to blockchain via Bitcoin of course, analyzed Ethereum thereafter and from that moment I have a keen interest in smart contact platforms. I’m passionate about Ethereum but I find Zilliqa to have a better risk-reward ratio. Especially because Zilliqa has found an elegant balance between being secure, decentralized and scalable in my opinion.
 
Below I post my analysis of why from all the coins I went through I’m most bullish on Zilliqa (yes I went through Tezos, EOS, NEO, VeChain, Harmony, Algorand, Cardano etc.). Note that this is not investment advice and although it's a thorough analysis there is obviously some bias involved. Looking forward to what you all think!
 
Fun fact: the name Zilliqa is a play on ‘silica’ silicon dioxide which means “Silicon for the high-throughput consensus computer.”
 
This post is divided into (i) Technology, (ii) Business & Partnerships, and (iii) Marketing & Community. I’ve tried to make the technology part readable for a broad audience. If you’ve ever tried understanding the inner workings of Bitcoin and Ethereum you should be able to grasp most parts. Otherwise, just skim through and once you are zoning out head to the next part.
 
Technology and some more:
 
Introduction
 
The technology is one of the main reasons why I’m so bullish on Zilliqa. First thing you see on their website is: “Zilliqa is a high-performance, high-security blockchain platform for enterprises and next-generation applications.” These are some bold statements.
 
Before we deep dive into the technology let’s take a step back in time first as they have quite the history. The initial research paper from which Zilliqa originated dates back to August 2016: Elastico: A Secure Sharding Protocol For Open Blockchains where Loi Luu (Kyber Network) is one of the co-authors. Other ideas that led to the development of what Zilliqa has become today are: Bitcoin-NG, collective signing CoSi, ByzCoin and Omniledger.
 
The technical white paper was made public in August 2017 and since then they have achieved everything stated in the white paper and also created their own open source intermediate level smart contract language called Scilla (functional programming language similar to OCaml) too.
 
Mainnet is live since the end of January 2019 with daily transaction rates growing continuously. About a week ago mainnet reached 5 million transactions, 500.000+ addresses in total along with 2400 nodes keeping the network decentralized and secure. Circulating supply is nearing 11 billion and currently only mining rewards are left. The maximum supply is 21 billion with annual inflation being 7.13% currently and will only decrease with time.
 
Zilliqa realized early on that the usage of public cryptocurrencies and smart contracts were increasing but decentralized, secure, and scalable alternatives were lacking in the crypto space. They proposed to apply sharding onto a public smart contract blockchain where the transaction rate increases almost linear with the increase in the amount of nodes. More nodes = higher transaction throughput and increased decentralization. Sharding comes in many forms and Zilliqa uses network-, transaction- and computational sharding. Network sharding opens up the possibility of using transaction- and computational sharding on top. Zilliqa does not use state sharding for now. We’ll come back to this later.
 
Before we continue dissecting how Zilliqa achieves such from a technological standpoint it’s good to keep in mind that a blockchain being decentralised and secure and scalable is still one of the main hurdles in allowing widespread usage of decentralised networks. In my opinion this needs to be solved first before blockchains can get to the point where they can create and add large scale value. So I invite you to read the next section to grasp the underlying fundamentals. Because after all these premises need to be true otherwise there isn’t a fundamental case to be bullish on Zilliqa, right?
 
Down the rabbit hole
 
How have they achieved this? Let’s define the basics first: key players on Zilliqa are the users and the miners. A user is anybody who uses the blockchain to transfer funds or run smart contracts. Miners are the (shard) nodes in the network who run the consensus protocol and get rewarded for their service in Zillings (ZIL). The mining network is divided into several smaller networks called shards, which is also referred to as ‘network sharding’. Miners subsequently are randomly assigned to a shard by another set of miners called DS (Directory Service) nodes. The regular shards process transactions and the outputs of these shards are eventually combined by the DS shard as they reach consensus on the final state. More on how these DS shards reach consensus (via pBFT) will be explained later on.
 
The Zilliqa network produces two types of blocks: DS blocks and Tx blocks. One DS Block consists of 100 Tx Blocks. And as previously mentioned there are two types of nodes concerned with reaching consensus: shard nodes and DS nodes. Becoming a shard node or DS node is being defined by the result of a PoW cycle (Ethash) at the beginning of the DS Block. All candidate mining nodes compete with each other and run the PoW (Proof-of-Work) cycle for 60 seconds and the submissions achieving the highest difficulty will be allowed on the network. And to put it in perspective: the average difficulty for one DS node is ~ 2 Th/s equaling 2.000.000 Mh/s or 55 thousand+ GeForce GTX 1070 / 8 GB GPUs at 35.4 Mh/s. Each DS Block 10 new DS nodes are allowed. And a shard node needs to provide around 8.53 GH/s currently (around 240 GTX 1070s). Dual mining ETH/ETC and ZIL is possible and can be done via mining software such as Phoenix and Claymore. There are pools and if you have large amounts of hashing power (Ethash) available you could mine solo.
 
The PoW cycle of 60 seconds is a peak performance and acts as an entry ticket to the network. The entry ticket is called a sybil resistance mechanism and makes it incredibly hard for adversaries to spawn lots of identities and manipulate the network with these identities. And after every 100 Tx Blocks which corresponds to roughly 1,5 hour this PoW process repeats. In between these 1,5 hour, no PoW needs to be done meaning Zilliqa’s energy consumption to keep the network secure is low. For more detailed information on how mining works click here.
Okay, hats off to you. You have made it this far. Before we go any deeper down the rabbit hole we first must understand why Zilliqa goes through all of the above technicalities and understand a bit more what a blockchain on a more fundamental level is. Because the core of Zilliqa’s consensus protocol relies on the usage of pBFT (practical Byzantine Fault Tolerance) we need to know more about state machines and their function. Navigate to Viewblock, a Zilliqa block explorer, and just come back to this article. We will use this site to navigate through a few concepts.
 
We have established that Zilliqa is a public and distributed blockchain. Meaning that everyone with an internet connection can send ZILs, trigger smart contracts, etc. and there is no central authority who fully controls the network. Zilliqa and other public and distributed blockchains (like Bitcoin and Ethereum) can also be defined as state machines.
 
Taking the liberty of paraphrasing examples and definitions given by Samuel Brooks’ medium article, he describes the definition of a blockchain (like Zilliqa) as: “A peer-to-peer, append-only datastore that uses consensus to synchronize cryptographically-secure data”.
 
Next, he states that: "blockchains are fundamentally systems for managing valid state transitions”. For some more context, I recommend reading the whole medium article to get a better grasp of the definitions and understanding of state machines. Nevertheless, let’s try to simplify and compile it into a single paragraph. Take traffic lights as an example: all its states (red, amber, and green) are predefined, all possible outcomes are known and it doesn’t matter if you encounter the traffic light today or tomorrow. It will still behave the same. Managing the states of a traffic light can be done by triggering a sensor on the road or pushing a button resulting in one traffic lights’ state going from green to red (via amber) and another light from red to green.
 
With public blockchains like Zilliqa, this isn’t so straightforward and simple. It started with block #1 almost 1,5 years ago and every 45 seconds or so a new block linked to the previous block is being added. Resulting in a chain of blocks with transactions in it that everyone can verify from block #1 to the current #647.000+ block. The state is ever changing and the states it can find itself in are infinite. And while the traffic light might work together in tandem with various other traffic lights, it’s rather insignificant comparing it to a public blockchain. Because Zilliqa consists of 2400 nodes who need to work together to achieve consensus on what the latest valid state is while some of these nodes may have latency or broadcast issues, drop offline or are deliberately trying to attack the network, etc.
 
Now go back to the Viewblock page take a look at the amount of transaction, addresses, block and DS height and then hit refresh. Obviously as expected you see new incremented values on one or all parameters. And how did the Zilliqa blockchain manage to transition from a previous valid state to the latest valid state? By using pBFT to reach consensus on the latest valid state.
 
After having obtained the entry ticket, miners execute pBFT to reach consensus on the ever-changing state of the blockchain. pBFT requires a series of network communication between nodes, and as such there is no GPU involved (but CPU). Resulting in the total energy consumed to keep the blockchain secure, decentralized and scalable being low.
 
pBFT stands for practical Byzantine Fault Tolerance and is an optimization on the Byzantine Fault Tolerant algorithm. To quote Blockonomi: “In the context of distributed systems, Byzantine Fault Tolerance is the ability of a distributed computer network to function as desired and correctly reach a sufficient consensus despite malicious components (nodes) of the system failing or propagating incorrect information to other peers.” Zilliqa is such a distributed computer network and depends on the honesty of the nodes (shard and DS) to reach consensus and to continuously update the state with the latest block. If pBFT is a new term for you I can highly recommend the Blockonomi article.
 
The idea of pBFT was introduced in 1999 - one of the authors even won a Turing award for it - and it is well researched and applied in various blockchains and distributed systems nowadays. If you want more advanced information than the Blockonomi link provides click here. And if you’re in between Blockonomi and the University of Singapore read the Zilliqa Design Story Part 2 dating from October 2017.
Quoting from the Zilliqa tech whitepaper: “pBFT relies upon a correct leader (which is randomly selected) to begin each phase and proceed when the sufficient majority exists. In case the leader is byzantine it can stall the entire consensus protocol. To address this challenge, pBFT offers a view change protocol to replace the byzantine leader with another one.”
 
pBFT can tolerate ⅓ of the nodes being dishonest (offline counts as Byzantine = dishonest) and the consensus protocol will function without stalling or hiccups. Once there are more than ⅓ of dishonest nodes but no more than ⅔ the network will be stalled and a view change will be triggered to elect a new DS leader. Only when more than ⅔ of the nodes are dishonest (66%) double-spend attacks become possible.
 
If the network stalls no transactions can be processed and one has to wait until a new honest leader has been elected. When the mainnet was just launched and in its early phases, view changes happened regularly. As of today the last stalling of the network - and view change being triggered - was at the end of October 2019.
 
Another benefit of using pBFT for consensus besides low energy is the immediate finality it provides. Once your transaction is included in a block and the block is added to the chain it’s done. Lastly, take a look at this article where three types of finality are being defined: probabilistic, absolute and economic finality. Zilliqa falls under the absolute finality (just like Tendermint for example). Although lengthy already we skipped through some of the inner workings from Zilliqa’s consensus: read the Zilliqa Design Story Part 3 and you will be close to having a complete picture on it. Enough about PoW, sybil resistance mechanism, pBFT, etc. Another thing we haven’t looked at yet is the amount of decentralization.
 
Decentralisation
 
Currently, there are four shards, each one of them consisting of 600 nodes. 1 shard with 600 so-called DS nodes (Directory Service - they need to achieve a higher difficulty than shard nodes) and 1800 shard nodes of which 250 are shard guards (centralized nodes controlled by the team). The amount of shard guards has been steadily declining from 1200 in January 2019 to 250 as of May 2020. On the Viewblock statistics, you can see that many of the nodes are being located in the US but those are only the (CPU parts of the) shard nodes who perform pBFT. There is no data from where the PoW sources are coming. And when the Zilliqa blockchain starts reaching its transaction capacity limit, a network upgrade needs to be executed to lift the current cap of maximum 2400 nodes to allow more nodes and formation of more shards which will allow to network to keep on scaling according to demand.
Besides shard nodes there are also seed nodes. The main role of seed nodes is to serve as direct access points (for end-users and clients) to the core Zilliqa network that validates transactions. Seed nodes consolidate transaction requests and forward these to the lookup nodes (another type of nodes) for distribution to the shards in the network. Seed nodes also maintain the entire transaction history and the global state of the blockchain which is needed to provide services such as block explorers. Seed nodes in the Zilliqa network are comparable to Infura on Ethereum.
 
The seed nodes were first only operated by Zilliqa themselves, exchanges and Viewblock. Operators of seed nodes like exchanges had no incentive to open them for the greater public. They were centralised at first. Decentralisation at the seed nodes level has been steadily rolled out since March 2020 ( Zilliqa Improvement Proposal 3 ). Currently the amount of seed nodes is being increased, they are public-facing and at the same time PoS is applied to incentivize seed node operators and make it possible for ZIL holders to stake and earn passive yields. Important distinction: seed nodes are not involved with consensus! That is still PoW as entry ticket and pBFT for the actual consensus.
 
5% of the block rewards are being assigned to seed nodes (from the beginning in 2019) and those are being used to pay out ZIL stakers. The 5% block rewards with an annual yield of 10.03% translate to roughly 610 MM ZILs in total that can be staked. Exchanges use the custodial variant of staking and wallets like Moonlet will use the non-custodial version (starting in Q3 2020). Staking is being done by sending ZILs to a smart contract created by Zilliqa and audited by Quantstamp.
 
With a high amount of DS; shard nodes and seed nodes becoming more decentralized too, Zilliqa qualifies for the label of decentralized in my opinion.
 
Smart contracts
 
Let me start by saying I’m not a developer and my programming skills are quite limited. So I‘m taking the ELI5 route (maybe 12) but if you are familiar with Javascript, Solidity or specifically OCaml please head straight to Scilla - read the docs to get a good initial grasp of how Zilliqa’s smart contract language Scilla works and if you ask yourself “why another programming language?” check this article. And if you want to play around with some sample contracts in an IDE click here. The faucet can be found here. And more information on architecture, dapp development and API can be found on the Developer Portal.
If you are more into listening and watching: check this recent webinar explaining Zilliqa and Scilla. Link is time-stamped so you’ll start right away with a platform introduction, roadmap 2020 and afterwards a proper Scilla introduction.
 
Generalized: programming languages can be divided into being ‘object-oriented’ or ‘functional’. Here is an ELI5 given by software development academy: * “all programs have two basic components, data – what the program knows – and behavior – what the program can do with that data. So object-oriented programming states that combining data and related behaviors in one place, is called “object”, which makes it easier to understand how a particular program works. On the other hand, functional programming argues that data and behavior are different things and should be separated to ensure their clarity.” *
 
Scilla is on the functional side and shares similarities with OCaml: OCaml is a general-purpose programming language with an emphasis on expressiveness and safety. It has an advanced type system that helps catch your mistakes without getting in your way. It's used in environments where a single mistake can cost millions and speed matters, is supported by an active community, and has a rich set of libraries and development tools. For all its power, OCaml is also pretty simple, which is one reason it's often used as a teaching language.
 
Scilla is blockchain agnostic, can be implemented onto other blockchains as well, is recognized by academics and won a so-called Distinguished Artifact Award award at the end of last year.
 
One of the reasons why the Zilliqa team decided to create their own programming language focused on preventing smart contract vulnerabilities is that adding logic on a blockchain, programming, means that you cannot afford to make mistakes. Otherwise, it could cost you. It’s all great and fun blockchains being immutable but updating your code because you found a bug isn’t the same as with a regular web application for example. And with smart contracts, it inherently involves cryptocurrencies in some form thus value.
 
Another difference with programming languages on a blockchain is gas. Every transaction you do on a smart contract platform like Zilliqa or Ethereum costs gas. With gas you basically pay for computational costs. Sending a ZIL from address A to address B costs 0.001 ZIL currently. Smart contracts are more complex, often involve various functions and require more gas (if gas is a new concept click here ).
 
So with Scilla, similar to Solidity, you need to make sure that “every function in your smart contract will run as expected without hitting gas limits. An improper resource analysis may lead to situations where funds may get stuck simply because a part of the smart contract code cannot be executed due to gas limits. Such constraints are not present in traditional software systems”. Scilla design story part 1
 
Some examples of smart contract issues you’d want to avoid are: leaking funds, ‘unexpected changes to critical state variables’ (example: someone other than you setting his or her address as the owner of the smart contract after creation) or simply killing a contract.
 
Scilla also allows for formal verification. Wikipedia to the rescue: In the context of hardware and software systems, formal verification is the act of proving or disproving the correctness of intended algorithms underlying a system with respect to a certain formal specification or property, using formal methods of mathematics.
 
Formal verification can be helpful in proving the correctness of systems such as: cryptographic protocols, combinational circuits, digital circuits with internal memory, and software expressed as source code.
 
Scilla is being developed hand-in-hand with formalization of its semantics and its embedding into the Coq proof assistant — a state-of-the art tool for mechanized proofs about properties of programs.”
 
Simply put, with Scilla and accompanying tooling developers can be mathematically sure and proof that the smart contract they’ve written does what he or she intends it to do.
 
Smart contract on a sharded environment and state sharding
 
There is one more topic I’d like to touch on: smart contract execution in a sharded environment (and what is the effect of state sharding). This is a complex topic. I’m not able to explain it any easier than what is posted here. But I will try to compress the post into something easy to digest.
 
Earlier on we have established that Zilliqa can process transactions in parallel due to network sharding. This is where the linear scalability comes from. We can define simple transactions: a transaction from address A to B (Category 1), a transaction where a user interacts with one smart contract (Category 2) and the most complex ones where triggering a transaction results in multiple smart contracts being involved (Category 3). The shards are able to process transactions on their own without interference of the other shards. With Category 1 transactions that is doable, with Category 2 transactions sometimes if that address is in the same shard as the smart contract but with Category 3 you definitely need communication between the shards. Solving that requires to make a set of communication rules the protocol needs to follow in order to process all transactions in a generalised fashion.
 
And this is where the downsides of state sharding comes in currently. All shards in Zilliqa have access to the complete state. Yes the state size (0.1 GB at the moment) grows and all of the nodes need to store it but it also means that they don’t need to shop around for information available on other shards. Requiring more communication and adding more complexity. Computer science knowledge and/or developer knowledge required links if you want to dig further: Scilla - language grammar Scilla - Foundations for Verifiable Decentralised Computations on a Blockchain Gas Accounting NUS x Zilliqa: Smart contract language workshop
 
Easier to follow links on programming Scilla https://learnscilla.com/home Ivan on Tech
 
Roadmap / Zilliqa 2.0
 
There is no strict defined roadmap but here are topics being worked on. And via the Zilliqa website there is also more information on the projects they are working on.
 
Business & Partnerships
 
It’s not only technology in which Zilliqa seems to be excelling as their ecosystem has been expanding and starting to grow rapidly. The project is on a mission to provide OpenFinance (OpFi) to the world and Singapore is the right place to be due to its progressive regulations and futuristic thinking. Singapore has taken a proactive approach towards cryptocurrencies by introducing the Payment Services Act 2019 (PS Act). Among other things, the PS Act will regulate intermediaries dealing with certain cryptocurrencies, with a particular focus on consumer protection and anti-money laundering. It will also provide a stable regulatory licensing and operating framework for cryptocurrency entities, effectively covering all crypto businesses and exchanges based in Singapore. According to PWC 82% of the surveyed executives in Singapore reported blockchain initiatives underway and 13% of them have already brought the initiatives live to the market. There is also an increasing list of organizations that are starting to provide digital payment services. Moreover, Singaporean blockchain developers Building Cities Beyond has recently created an innovation $15 million grant to encourage development on its ecosystem. This all suggests that Singapore tries to position itself as (one of) the leading blockchain hubs in the world.
 
Zilliqa seems to already take advantage of this and recently helped launch Hg Exchange on their platform, together with financial institutions PhillipCapital, PrimePartners and Fundnel. Hg Exchange, which is now approved by the Monetary Authority of Singapore (MAS), uses smart contracts to represent digital assets. Through Hg Exchange financial institutions worldwide can use Zilliqa's safe-by-design smart contracts to enable the trading of private equities. For example, think of companies such as Grab, Airbnb, SpaceX that are not available for public trading right now. Hg Exchange will allow investors to buy shares of private companies & unicorns and capture their value before an IPO. Anquan, the main company behind Zilliqa, has also recently announced that they became a partner and shareholder in TEN31 Bank, which is a fully regulated bank allowing for tokenization of assets and is aiming to bridge the gap between conventional banking and the blockchain world. If STOs, the tokenization of assets, and equity trading will continue to increase, then Zilliqa’s public blockchain would be the ideal candidate due to its strategic positioning, partnerships, regulatory compliance and the technology that is being built on top of it.
 
What is also very encouraging is their focus on banking the un(der)banked. They are launching a stablecoin basket starting with XSGD. As many of you know, stablecoins are currently mostly used for trading. However, Zilliqa is actively trying to broaden the use case of stablecoins. I recommend everybody to read this text that Amrit Kumar wrote (one of the co-founders). These stablecoins will be integrated in the traditional markets and bridge the gap between the crypto world and the traditional world. This could potentially revolutionize and legitimise the crypto space if retailers and companies will for example start to use stablecoins for payments or remittances, instead of it solely being used for trading.
 
Zilliqa also released their DeFi strategic roadmap (dating November 2019) which seems to be aligning well with their OpFi strategy. A non-custodial DEX is coming to Zilliqa made by Switcheo which allows cross-chain trading (atomic swaps) between ETH, EOS and ZIL based tokens. They also signed a Memorandum of Understanding for a (soon to be announced) USD stablecoin. And as Zilliqa is all about regulations and being compliant, I’m speculating on it to be a regulated USD stablecoin. Furthermore, XSGD is already created and visible on block explorer and XIDR (Indonesian Stablecoin) is also coming soon via StraitsX. Here also an overview of the Tech Stack for Financial Applications from September 2019. Further quoting Amrit Kumar on this:
 
There are two basic building blocks in DeFi/OpFi though: 1) stablecoins as you need a non-volatile currency to get access to this market and 2) a dex to be able to trade all these financial assets. The rest are built on top of these blocks.
 
So far, together with our partners and community, we have worked on developing these building blocks with XSGD as a stablecoin. We are working on bringing a USD-backed stablecoin as well. We will soon have a decentralised exchange developed by Switcheo. And with HGX going live, we are also venturing into the tokenization space. More to come in the future.”
 
Additionally, they also have this ZILHive initiative that injects capital into projects. There have been already 6 waves of various teams working on infrastructure, innovation and research, and they are not from ASEAN or Singapore only but global: see Grantees breakdown by country. Over 60 project teams from over 20 countries have contributed to Zilliqa's ecosystem. This includes individuals and teams developing wallets, explorers, developer toolkits, smart contract testing frameworks, dapps, etc. As some of you may know, Unstoppable Domains (UD) blew up when they launched on Zilliqa. UD aims to replace cryptocurrency addresses with a human-readable name and allows for uncensorable websites. Zilliqa will probably be the only one able to handle all these transactions onchain due to ability to scale and its resulting low fees which is why the UD team launched this on Zilliqa in the first place. Furthermore, Zilliqa also has a strong emphasis on security, compliance, and privacy, which is why they partnered with companies like Elliptic, ChainSecurity (part of PwC Switzerland), and Incognito. Their sister company Aqilliz (Zilliqa spelled backwards) focuses on revolutionizing the digital advertising space and is doing interesting things like using Zilliqa to track outdoor digital ads with companies like Foodpanda.
 
Zilliqa is listed on nearly all major exchanges, having several different fiat-gateways and recently have been added to Binance’s margin trading and futures trading with really good volume. They also have a very impressive team with good credentials and experience. They don't just have “tech people”. They have a mix of tech people, business people, marketeers, scientists, and more. Naturally, it's good to have a mix of people with different skill sets if you work in the crypto space.
 
Marketing & Community
 
Zilliqa has a very strong community. If you just follow their Twitter their engagement is much higher for a coin that has approximately 80k followers. They also have been ‘coin of the day’ by LunarCrush many times. LunarCrush tracks real-time cryptocurrency value and social data. According to their data, it seems Zilliqa has a more fundamental and deeper understanding of marketing and community engagement than almost all other coins. While almost all coins have been a bit frozen in the last months, Zilliqa seems to be on its own bull run. It was somewhere in the 100s a few months ago and is currently ranked #46 on CoinGecko. Their official Telegram also has over 20k people and is very active, and their community channel which is over 7k now is more active and larger than many other official channels. Their local communities also seem to be growing.
 
Moreover, their community started ‘Zillacracy’ together with the Zilliqa core team ( see www.zillacracy.com ). It’s a community-run initiative where people from all over the world are now helping with marketing and development on Zilliqa. Since its launch in February 2020 they have been doing a lot and will also run their own non-custodial seed node for staking. This seed node will also allow them to start generating revenue for them to become a self sustaining entity that could potentially scale up to become a decentralized company working in parallel with the Zilliqa core team. Comparing it to all the other smart contract platforms (e.g. Cardano, EOS, Tezos etc.) they don't seem to have started a similar initiative (correct me if I’m wrong though). This suggests in my opinion that these other smart contract platforms do not fully understand how to utilize the ‘power of the community’. This is something you cannot ‘buy with money’ and gives many projects in the space a disadvantage.
 
Zilliqa also released two social products called SocialPay and Zeeves. SocialPay allows users to earn ZILs while tweeting with a specific hashtag. They have recently used it in partnership with the Singapore Red Cross for a marketing campaign after their initial pilot program. It seems like a very valuable social product with a good use case. I can see a lot of traditional companies entering the space through this product, which they seem to suggest will happen. Tokenizing hashtags with smart contracts to get network effect is a very smart and innovative idea.
 
Regarding Zeeves, this is a tipping bot for Telegram. They already have 1000s of signups and they plan to keep upgrading it for more and more people to use it (e.g. they recently have added a quiz features). They also use it during AMAs to reward people in real-time. It’s a very smart approach to grow their communities and get familiar with ZIL. I can see this becoming very big on Telegram. This tool suggests, again, that the Zilliqa team has a deeper understanding of what the crypto space and community needs and is good at finding the right innovative tools to grow and scale.
 
To be honest, I haven’t covered everything (i’m also reaching the character limited haha). So many updates happening lately that it's hard to keep up, such as the International Monetary Fund mentioning Zilliqa in their report, custodial and non-custodial Staking, Binance Margin, Futures, Widget, entering the Indian market, and more. The Head of Marketing Colin Miles has also released this as an overview of what is coming next. And last but not least, Vitalik Buterin has been mentioning Zilliqa lately acknowledging Zilliqa and mentioning that both projects have a lot of room to grow. There is much more info of course and a good part of it has been served to you on a silver platter. I invite you to continue researching by yourself :-) And if you have any comments or questions please post here!
submitted by haveyouheardaboutit to CryptoCurrency [link] [comments]

Help with wallet importing keys?

I have a private key for an address containing less than one Bitcoin that I've had for years. But now it's a couple grand USD, so I want access to it. :)
So I tried to import the private key to Amory wallet. But it said it wasn't an elliptical curve key.
After some research I found
https://en.bitcoin.it/wiki/Private_key
which says
"Private keys associated with compressed public keys are 52 characters and start with a capital L or K on mainnet..."
My key fits that description.
So does anyone know what wallet I can import this private key into in order to access my BTC bits?
If you can help post your address and I'll tip you once I can.
submitted by Stack3 to Bitcoin [link] [comments]

Why i’m bullish on Zilliqa (long read)

Hey all, I've been researching coins since 2017 and have gone through 100s of them in the last 3 years. I got introduced to blockchain via Bitcoin of course, analysed Ethereum thereafter and from that moment I have a keen interest in smart contact platforms. I’m passionate about Ethereum but I find Zilliqa to have a better risk reward ratio. Especially because Zilliqa has found an elegant balance between being secure, decentralised and scalable in my opinion.
 
Below I post my analysis why from all the coins I went through I’m most bullish on Zilliqa (yes I went through Tezos, EOS, NEO, VeChain, Harmony, Algorand, Cardano etc.). Note that this is not investment advice and although it's a thorough analysis there is obviously some bias involved. Looking forward to what you all think!
 
Fun fact: the name Zilliqa is a play on ‘silica’ silicon dioxide which means “Silicon for the high-throughput consensus computer.”
 
This post is divided into (i) Technology, (ii) Business & Partnerships, and (iii) Marketing & Community. I’ve tried to make the technology part readable for a broad audience. If you’ve ever tried understanding the inner workings of Bitcoin and Ethereum you should be able to grasp most parts. Otherwise just skim through and once you are zoning out head to the next part.
 
Technology and some more:
 
Introduction The technology is one of the main reasons why I’m so bullish on Zilliqa. First thing you see on their website is: “Zilliqa is a high-performance, high-security blockchain platform for enterprises and next-generation applications.” These are some bold statements.
 
Before we deep dive into the technology let’s take a step back in time first as they have quite the history. The initial research paper from which Zilliqa originated dates back to August 2016: Elastico: A Secure Sharding Protocol For Open Blockchains where Loi Luu (Kyber Network) is one of the co-authors. Other ideas that led to the development of what Zilliqa has become today are: Bitcoin-NG, collective signing CoSi, ByzCoin and Omniledger.
 
The technical white paper was made public in August 2017 and since then they have achieved everything stated in the white paper and also created their own open source intermediate level smart contract language called Scilla (functional programming language similar to OCaml) too.
 
Mainnet is live since end of January 2019 with daily transaction rate growing continuously. About a week ago mainnet reached 5 million transactions, 500.000+ addresses in total along with 2400 nodes keeping the network decentralised and secure. Circulating supply is nearing 11 billion and currently only mining rewards are left. Maximum supply is 21 billion with annual inflation being 7.13% currently and will only decrease with time.
 
Zilliqa realised early on that the usage of public cryptocurrencies and smart contracts were increasing but decentralised, secure and scalable alternatives were lacking in the crypto space. They proposed to apply sharding onto a public smart contract blockchain where the transaction rate increases almost linear with the increase in amount of nodes. More nodes = higher transaction throughput and increased decentralisation. Sharding comes in many forms and Zilliqa uses network-, transaction- and computational sharding. Network sharding opens up the possibility of using transaction- and computational sharding on top. Zilliqa does not use state sharding for now. We’ll come back to this later.
 
Before we continue disecting how Zilliqa achieves such from a technological standpoint it’s good to keep in mind that a blockchain being decentralised and secure and scalable is still one of the main hurdles in allowing widespread usage of decentralised networks. In my opinion this needs to be solved first before blockchains can get to the point where they can create and add large scale value. So I invite you to read the next section to grasp the underlying fundamentals. Because after all these premises need to be true otherwise there isn’t a fundamental case to be bullish on Zilliqa, right?
 
Down the rabbit hole
 
How have they achieved this? Let’s define the basics first: key players on Zilliqa are the users and the miners. A user is anybody who uses the blockchain to transfer funds or run smart contracts. Miners are the (shard) nodes in the network who run the consensus protocol and get rewarded for their service in Zillings (ZIL). The mining network is divided into several smaller networks called shards, which is also referred to as ‘network sharding’. Miners subsequently are randomly assigned to a shard by another set of miners called DS (Directory Service) nodes. The regular shards process transactions and the outputs of these shards are eventually combined by the DS shard as they reach consensus on the final state. More on how these DS shards reach consensus (via pBFT) will be explained later on.
 
The Zilliqa network produces two types of blocks: DS blocks and Tx blocks. One DS Block consists of 100 Tx Blocks. And as previously mentioned there are two types of nodes concerned with reaching consensus: shard nodes and DS nodes. Becoming a shard node or DS node is being defined by the result of a PoW cycle (Ethash) at the beginning of the DS Block. All candidate mining nodes compete with each other and run the PoW (Proof-of-Work) cycle for 60 seconds and the submissions achieving the highest difficulty will be allowed on the network. And to put it in perspective: the average difficulty for one DS node is ~ 2 Th/s equaling 2.000.000 Mh/s or 55 thousand+ GeForce GTX 1070 / 8 GB GPUs at 35.4 Mh/s. Each DS Block 10 new DS nodes are allowed. And a shard node needs to provide around 8.53 GH/s currently (around 240 GTX 1070s). Dual mining ETH/ETC and ZIL is possible and can be done via mining software such as Phoenix and Claymore. There are pools and if you have large amounts of hashing power (Ethash) available you could mine solo.
 
The PoW cycle of 60 seconds is a peak performance and acts as an entry ticket to the network. The entry ticket is called a sybil resistance mechanism and makes it incredibly hard for adversaries to spawn lots of identities and manipulate the network with these identities. And after every 100 Tx Blocks which corresponds to roughly 1,5 hour this PoW process repeats. In between these 1,5 hour no PoW needs to be done meaning Zilliqa’s energy consumption to keep the network secure is low. For more detailed information on how mining works click here.
Okay, hats off to you. You have made it this far. Before we go any deeper down the rabbit hole we first must understand why Zilliqa goes through all of the above technicalities and understand a bit more what a blockchain on a more fundamental level is. Because the core of Zilliqa’s consensus protocol relies on the usage of pBFT (practical Byzantine Fault Tolerance) we need to know more about state machines and their function. Navigate to Viewblock, a Zilliqa block explorer, and just come back to this article. We will use this site to navigate through a few concepts.
 
We have established that Zilliqa is a public and distributed blockchain. Meaning that everyone with an internet connection can send ZILs, trigger smart contracts etc. and there is no central authority who fully controls the network. Zilliqa and other public and distributed blockchains (like Bitcoin and Ethereum) can also be defined as state machines.
 
Taking the liberty of paraphrasing examples and definitions given by Samuel Brooks’ medium article, he describes the definition of a blockchain (like Zilliqa) as:
“A peer-to-peer, append-only datastore that uses consensus to synchronise cryptographically-secure data”.
 
Next he states that: >“blockchains are fundamentally systems for managing valid state transitions”.* For some more context, I recommend reading the whole medium article to get a better grasp of the definitions and understanding of state machines. Nevertheless, let’s try to simplify and compile it into a single paragraph. Take traffic lights as an example: all its states (red, amber and green) are predefined, all possible outcomes are known and it doesn’t matter if you encounter the traffic light today or tomorrow. It will still behave the same. Managing the states of a traffic light can be done by triggering a sensor on the road or pushing a button resulting in one traffic lights’ state going from green to red (via amber) and another light from red to green.
 
With public blockchains like Zilliqa this isn’t so straightforward and simple. It started with block #1 almost 1,5 years ago and every 45 seconds or so a new block linked to the previous block is being added. Resulting in a chain of blocks with transactions in it that everyone can verify from block #1 to the current #647.000+ block. The state is ever changing and the states it can find itself in are infinite. And while the traffic light might work together in tandem with various other traffic lights, it’s rather insignificant comparing it to a public blockchain. Because Zilliqa consists of 2400 nodes who need to work together to achieve consensus on what the latest valid state is while some of these nodes may have latency or broadcast issues, drop offline or are deliberately trying to attack the network etc.
 
Now go back to the Viewblock page take a look at the amount of transaction, addresses, block and DS height and then hit refresh. Obviously as expected you see new incremented values on one or all parameters. And how did the Zilliqa blockchain manage to transition from a previous valid state to the latest valid state? By using pBFT to reach consensus on the latest valid state.
 
After having obtained the entry ticket, miners execute pBFT to reach consensus on the ever changing state of the blockchain. pBFT requires a series of network communication between nodes, and as such there is no GPU involved (but CPU). Resulting in the total energy consumed to keep the blockchain secure, decentralised and scalable being low.
 
pBFT stands for practical Byzantine Fault Tolerance and is an optimisation on the Byzantine Fault Tolerant algorithm. To quote Blockonomi: “In the context of distributed systems, Byzantine Fault Tolerance is the ability of a distributed computer network to function as desired and correctly reach a sufficient consensus despite malicious components (nodes) of the system failing or propagating incorrect information to other peers.” Zilliqa is such a distributed computer network and depends on the honesty of the nodes (shard and DS) to reach consensus and to continuously update the state with the latest block. If pBFT is a new term for you I can highly recommend the Blockonomi article.
 
The idea of pBFT was introduced in 1999 - one of the authors even won a Turing award for it - and it is well researched and applied in various blockchains and distributed systems nowadays. If you want more advanced information than the Blockonomi link provides click here. And if you’re in between Blockonomi and University of Singapore read the Zilliqa Design Story Part 2 dating from October 2017.
Quoting from the Zilliqa tech whitepaper: “pBFT relies upon a correct leader (which is randomly selected) to begin each phase and proceed when the sufficient majority exists. In case the leader is byzantine it can stall the entire consensus protocol. To address this challenge, pBFT offers a view change protocol to replace the byzantine leader with another one.”
 
pBFT can tolerate ⅓ of the nodes being dishonest (offline counts as Byzantine = dishonest) and the consensus protocol will function without stalling or hiccups. Once there are more than ⅓ of dishonest nodes but no more than ⅔ the network will be stalled and a view change will be triggered to elect a new DS leader. Only when more than ⅔ of the nodes are dishonest (>66%) double spend attacks become possible.
 
If the network stalls no transactions can be processed and one has to wait until a new honest leader has been elected. When the mainnet was just launched and in its early phases, view changes happened regularly. As of today the last stalling of the network - and view change being triggered - was at the end of October 2019.
 
Another benefit of using pBFT for consensus besides low energy is the immediate finality it provides. Once your transaction is included in a block and the block is added to the chain it’s done. Lastly, take a look at this article where three types of finality are being defined: probabilistic, absolute and economic finality. Zilliqa falls under the absolute finality (just like Tendermint for example). Although lengthy already we skipped through some of the inner workings from Zilliqa’s consensus: read the Zilliqa Design Story Part 3 and you will be close to having a complete picture on it. Enough about PoW, sybil resistance mechanism, pBFT etc. Another thing we haven’t looked at yet is the amount of decentralisation.
 
Decentralisation
 
Currently there are four shards, each one of them consisting of 600 nodes. 1 shard with 600 so called DS nodes (Directory Service - they need to achieve a higher difficulty than shard nodes) and 1800 shard nodes of which 250 are shard guards (centralised nodes controlled by the team). The amount of shard guards has been steadily declining from 1200 in January 2019 to 250 as of May 2020. On the Viewblock statistics you can see that many of the nodes are being located in the US but those are only the (CPU parts of the) shard nodes who perform pBFT. There is no data from where the PoW sources are coming. And when the Zilliqa blockchain starts reaching their transaction capacity limit, a network upgrade needs to be executed to lift the current cap of maximum 2400 nodes to allow more nodes and formation of more shards which will allow to network to keep on scaling according to demand.
Besides shard nodes there are also seed nodes. The main role of seed nodes is to serve as direct access points (for end users and clients) to the core Zilliqa network that validates transactions. Seed nodes consolidate transaction requests and forward these to the lookup nodes (another type of nodes) for distribution to the shards in the network. Seed nodes also maintain the entire transaction history and the global state of the blockchain which is needed to provide services such as block explorers. Seed nodes in the Zilliqa network are comparable to Infura on Ethereum.
 
The seed nodes were first only operated by Zilliqa themselves, exchanges and Viewblock. Operators of seed nodes like exchanges had no incentive to open them for the greater public.They were centralised at first. Decentralisation at the seed nodes level has been steadily rolled out since March 2020 ( Zilliqa Improvement Proposal 3 ). Currently the amount of seed nodes is being increased, they are public facing and at the same time PoS is applied to incentivize seed node operators and make it possible for ZIL holders to stake and earn passive yields. Important distinction: seed nodes are not involved with consensus! That is still PoW as entry ticket and pBFT for the actual consensus.
 
5% of the block rewards are being assigned to seed nodes (from the beginning in 2019) and those are being used to pay out ZIL stakers.The 5% block rewards with an annual yield of 10.03% translates to roughly 610 MM ZILs in total that can be staked. Exchanges use the custodial variant of staking and wallets like Moonlet will use the non custodial version (starting in Q3 2020). Staking is being done by sending ZILs to a smart contract created by Zilliqa and audited by Quantstamp.
 
With a high amount of DS & shard nodes and seed nodes becoming more decentralised too, Zilliqa qualifies for the label of decentralised in my opinion.
 
Smart contracts
 
Let me start by saying I’m not a developer and my programming skills are quite limited. So I‘m taking the ELI5 route (maybe 12) but if you are familiar with Javascript, Solidity or specifically OCaml please head straight to Scilla - read the docs to get a good initial grasp of how Zilliqa’s smart contract language Scilla works and if you ask yourself “why another programming language?” check this article. And if you want to play around with some sample contracts in an IDE click here. Faucet can be found here. And more information on architecture, dapp development and API can be found on the Developer Portal.
If you are more into listening and watching: check this recent webinar explaining Zilliqa and Scilla. Link is time stamped so you’ll start right away with a platform introduction, R&D roadmap 2020 and afterwards a proper Scilla introduction.
 
Generalised: programming languages can be divided into being ‘object oriented’ or ‘functional’. Here is an ELI5 given by software development academy: > “all programmes have two basic components, data – what the programme knows – and behaviour – what the programme can do with that data. So object-oriented programming states that combining data and related behaviours in one place, is called “object”, which makes it easier to understand how a particular program works. On the other hand, functional programming argues that data and behaviour are different things and should be separated to ensure their clarity.”
 
Scilla is on the functional side and shares similarities with OCaml: > OCaml is a general purpose programming language with an emphasis on expressiveness and safety. It has an advanced type system that helps catch your mistakes without getting in your way. It's used in environments where a single mistake can cost millions and speed matters, is supported by an active community, and has a rich set of libraries and development tools. For all its power, OCaml is also pretty simple, which is one reason it's often used as a teaching language.
 
Scilla is blockchain agnostic, can be implemented onto other blockchains as well, is recognised by academics and won a so called Distinguished Artifact Award award at the end of last year.
 
One of the reasons why the Zilliqa team decided to create their own programming language focused on preventing smart contract vulnerabilities safety is that adding logic on a blockchain, programming, means that you cannot afford to make mistakes. Otherwise it could cost you. It’s all great and fun blockchains being immutable but updating your code because you found a bug isn’t the same as with a regular web application for example. And with smart contracts it inherently involves cryptocurrencies in some form thus value.
 
Another difference with programming languages on a blockchain is gas. Every transaction you do on a smart contract platform like Zilliqa for Ethereum costs gas. With gas you basically pay for computational costs. Sending a ZIL from address A to address B costs 0.001 ZIL currently. Smart contracts are more complex, often involve various functions and require more gas (if gas is a new concept click here ).
 
So with Scilla, similar to Solidity, you need to make sure that “every function in your smart contract will run as expected without hitting gas limits. An improper resource analysis may lead to situations where funds may get stuck simply because a part of the smart contract code cannot be executed due to gas limits. Such constraints are not present in traditional software systems”. Scilla design story part 1
 
Some examples of smart contract issues you’d want to avoid are: leaking funds, ‘unexpected changes to critical state variables’ (example: someone other than you setting his or her address as the owner of the smart contract after creation) or simply killing a contract.
 
Scilla also allows for formal verification. Wikipedia to the rescue:
In the context of hardware and software systems, formal verification is the act of proving or disproving the correctness of intended algorithms underlying a system with respect to a certain formal specification or property, using formal methods of mathematics.
 
Formal verification can be helpful in proving the correctness of systems such as: cryptographic protocols, combinational circuits, digital circuits with internal memory, and software expressed as source code.
 
Scilla is being developed hand-in-hand with formalization of its semantics and its embedding into the Coq proof assistant — a state-of-the art tool for mechanized proofs about properties of programs.”
 
Simply put, with Scilla and accompanying tooling developers can be mathematically sure and proof that the smart contract they’ve written does what he or she intends it to do.
 
Smart contract on a sharded environment and state sharding
 
There is one more topic I’d like to touch on: smart contract execution in a sharded environment (and what is the effect of state sharding). This is a complex topic. I’m not able to explain it any easier than what is posted here. But I will try to compress the post into something easy to digest.
 
Earlier on we have established that Zilliqa can process transactions in parallel due to network sharding. This is where the linear scalability comes from. We can define simple transactions: a transaction from address A to B (Category 1), a transaction where a user interacts with one smart contract (Category 2) and the most complex ones where triggering a transaction results in multiple smart contracts being involved (Category 3). The shards are able to process transactions on their own without interference of the other shards. With Category 1 transactions that is doable, with Category 2 transactions sometimes if that address is in the same shard as the smart contract but with Category 3 you definitely need communication between the shards. Solving that requires to make a set of communication rules the protocol needs to follow in order to process all transactions in a generalised fashion.
 
And this is where the downsides of state sharding comes in currently. All shards in Zilliqa have access to the complete state. Yes the state size (0.1 GB at the moment) grows and all of the nodes need to store it but it also means that they don’t need to shop around for information available on other shards. Requiring more communication and adding more complexity. Computer science knowledge and/or developer knowledge required links if you want to dig further: Scilla - language grammar Scilla - Foundations for Verifiable Decentralised Computations on a Blockchain Gas Accounting NUS x Zilliqa: Smart contract language workshop
 
Easier to follow links on programming Scilla https://learnscilla.com/home Ivan on Tech
 
Roadmap / Zilliqa 2.0
 
There is no strict defined roadmap but here are topics being worked on. And via the Zilliqa website there is also more information on the projects they are working on.
 
Business & Partnerships  
It’s not only technology in which Zilliqa seems to be excelling as their ecosystem has been expanding and starting to grow rapidly. The project is on a mission to provide OpenFinance (OpFi) to the world and Singapore is the right place to be due to its progressive regulations and futuristic thinking. Singapore has taken a proactive approach towards cryptocurrencies by introducing the Payment Services Act 2019 (PS Act). Among other things, the PS Act will regulate intermediaries dealing with certain cryptocurrencies, with a particular focus on consumer protection and anti-money laundering. It will also provide a stable regulatory licensing and operating framework for cryptocurrency entities, effectively covering all crypto businesses and exchanges based in Singapore. According to PWC 82% of the surveyed executives in Singapore reported blockchain initiatives underway and 13% of them have already brought the initiatives live to the market. There is also an increasing list of organisations that are starting to provide digital payment services. Moreover, Singaporean blockchain developers Building Cities Beyond has recently created an innovation $15 million grant to encourage development on its ecosystem. This all suggest that Singapore tries to position itself as (one of) the leading blockchain hubs in the world.
 
Zilliqa seems to already taking advantage of this and recently helped launch Hg Exchange on their platform, together with financial institutions PhillipCapital, PrimePartners and Fundnel. Hg Exchange, which is now approved by the Monetary Authority of Singapore (MAS), uses smart contracts to represent digital assets. Through Hg Exchange financial institutions worldwide can use Zilliqa's safe-by-design smart contracts to enable the trading of private equities. For example, think of companies such as Grab, AirBnB, SpaceX that are not available for public trading right now. Hg Exchange will allow investors to buy shares of private companies & unicorns and capture their value before an IPO. Anquan, the main company behind Zilliqa, has also recently announced that they became a partner and shareholder in TEN31 Bank, which is a fully regulated bank allowing for tokenization of assets and is aiming to bridge the gap between conventional banking and the blockchain world. If STOs, the tokenization of assets, and equity trading will continue to increase, then Zilliqa’s public blockchain would be the ideal candidate due to its strategic positioning, partnerships, regulatory compliance and the technology that is being built on top of it.
 
What is also very encouraging is their focus on banking the un(der)banked. They are launching a stablecoin basket starting with XSGD. As many of you know, stablecoins are currently mostly used for trading. However, Zilliqa is actively trying to broaden the use case of stablecoins. I recommend everybody to read this text that Amrit Kumar wrote (one of the co-founders). These stablecoins will be integrated in the traditional markets and bridge the gap between the crypto world and the traditional world. This could potentially revolutionize and legitimise the crypto space if retailers and companies will for example start to use stablecoins for payments or remittances, instead of it solely being used for trading.
 
Zilliqa also released their DeFi strategic roadmap (dating November 2019) which seems to be aligning well with their OpFi strategy. A non-custodial DEX is coming to Zilliqa made by Switcheo which allows cross-chain trading (atomic swaps) between ETH, EOS and ZIL based tokens. They also signed a Memorandum of Understanding for a (soon to be announced) USD stablecoin. And as Zilliqa is all about regulations and being compliant, I’m speculating on it to be a regulated USD stablecoin. Furthermore, XSGD is already created and visible on block explorer and XIDR (Indonesian Stablecoin) is also coming soon via StraitsX. Here also an overview of the Tech Stack for Financial Applications from September 2019. Further quoting Amrit Kumar on this:
 
There are two basic building blocks in DeFi/OpFi though: 1) stablecoins as you need a non-volatile currency to get access to this market and 2) a dex to be able to trade all these financial assets. The rest are build on top of these blocks.
 
So far, together with our partners and community, we have worked on developing these building blocks with XSGD as a stablecoin. We are working on bringing a USD-backed stablecoin as well. We will soon have a decentralised exchange developed by Switcheo. And with HGX going live, we are also venturing into the tokenization space. More to come in the future.”*
 
Additionally, they also have this ZILHive initiative that injects capital into projects. There have been already 6 waves of various teams working on infrastructure, innovation and research, and they are not from ASEAN or Singapore only but global: see Grantees breakdown by country. Over 60 project teams from over 20 countries have contributed to Zilliqa's ecosystem. This includes individuals and teams developing wallets, explorers, developer toolkits, smart contract testing frameworks, dapps, etc. As some of you may know, Unstoppable Domains (UD) blew up when they launched on Zilliqa. UD aims to replace cryptocurrency addresses with a human readable name and allows for uncensorable websites. Zilliqa will probably be the only one able to handle all these transactions onchain due to ability to scale and its resulting low fees which is why the UD team launched this on Zilliqa in the first place. Furthermore, Zilliqa also has a strong emphasis on security, compliance, and privacy, which is why they partnered with companies like Elliptic, ChainSecurity (part of PwC Switzerland), and Incognito. Their sister company Aqilliz (Zilliqa spelled backwards) focuses on revolutionizing the digital advertising space and is doing interesting things like using Zilliqa to track outdoor digital ads with companies like Foodpanda.
 
Zilliqa is listed on nearly all major exchanges, having several different fiat-gateways and recently have been added to Binance’s margin trading and futures trading with really good volume. They also have a very impressive team with good credentials and experience. They dont just have “tech people”. They have a mix of tech people, business people, marketeers, scientists, and more. Naturally, it's good to have a mix of people with different skill sets if you work in the crypto space.
 
Marketing & Community
 
Zilliqa has a very strong community. If you just follow their Twitter their engagement is much higher for a coin that has approximately 80k followers. They also have been ‘coin of the day’ by LunarCrush many times. LunarCrush tracks real-time cryptocurrency value and social data. According to their data it seems Zilliqa has a more fundamental and deeper understanding of marketing and community engagement than almost all other coins. While almost all coins have been a bit frozen in the last months, Zilliqa seems to be on its own bull run. It was somewhere in the 100s a few months ago and is currently ranked #46 on CoinGecko. Their official Telegram also has over 20k people and is very active, and their community channel which is over 7k now is more active and larger than many other official channels. Their local communities) also seem to be growing.
 
Moreover, their community started ‘Zillacracy’ together with the Zilliqa core team ( see www.zillacracy.com ). It’s a community run initiative where people from all over the world are now helping with marketing and development on Zilliqa. Since its launch in February 2020 they have been doing a lot and will also run their own non custodial seed node for staking. This seed node will also allow them to start generating revenue for them to become a self sustaining entity that could potentially scale up to become a decentralized company working in parallel with the Zilliqa core team. Comparing it to all the other smart contract platforms (e.g. Cardano, EOS, Tezos etc.) they don't seem to have started a similar initiatives (correct me if I’m wrong though). This suggest in my opinion that these other smart contract platforms do not fully understand how to utilize the ‘power of the community’. This is something you cannot ‘buy with money’ and gives many projects in the space a disadvantage.
 
Zilliqa also released two social products called SocialPay and Zeeves. SocialPay allows users to earn ZILs while tweeting with a specific hashtag. They have recently used it in partnership with the Singapore Red Cross for a marketing campaign after their initial pilot program. It seems like a very valuable social product with a good use case. I can see a lot of traditional companies entering the space through this product, which they seem to suggest will happen. Tokenizing hashtags with smart contracts to get network effect is a very smart and innovative idea.
 
Regarding Zeeves, this is a tipping bot for Telegram. They already have 1000s of signups and they plan to keep upgrading it for more and more people to use it (e.g. they recently have added a quiz features). They also use it during AMAs to reward people in real time. It’s a very smart approach to grow their communities and get familiar with ZIL. I can see this becoming very big on Telegram. This tool suggests, again, that the Zilliqa team has a deeper understanding what the crypto space and community needs and is good at finding the right innovative tools to grow and scale.
 
To be honest, I haven’t covered everything (i’m also reaching the character limited haha). So many updates happening lately that it's hard to keep up, such as the International Monetary Fund mentioning Zilliqa in their report, custodial and non-custodial Staking, Binance Margin, Futures & Widget, entering the Indian market, and more. The Head of Marketing Colin Miles has also released this as an overview of what is coming next. And last but not least, Vitalik Buterin has been mentioning Zilliqa lately acknowledging Zilliqa and mentioning that both projects have a lot of room to grow. There is much more info of course and a good part of it has been served to you on a silver platter. I invite you to continue researching by yourself :-) And if you have any comments or questions please post here!
submitted by haveyouheardaboutit to CryptoCurrency [link] [comments]

ECDSA In Bitcoin

Digital signatures are considered the foundation of online sovereignty. The advent of public-key cryptography in 1976 paved the way for the creation of a global communications tool – the Internet, and a completely new form of money – Bitcoin. Although the fundamental properties of public-key cryptography have not changed much since then, dozens of different open-source digital signature schemes are now available to cryptographers.

How ECDSA was incorporated into Bitcoin

When Satoshi Nakamoto, a mystical founder of the first crypto, started working on Bitcoin, one of the key points was to select the signature schemes for an open and public financial system. The requirements were clear. An algorithm should have been widely used, understandable, safe enough, easy, and, what is more important, open-sourced.
Of all the options available at that time, he chose the one that met these criteria: Elliptic Curve Digital Signature Algorithm, or ECDSA.
At that time, native support for ECDSA was provided in OpenSSL, an open set of encryption tools developed by experienced cipher banks in order to increase the confidentiality of online communications. Compared to other popular schemes, ECDSA had such advantages as:
These are extremely useful features for digital money. At the same time, it provides a proportional level of security: for example, a 256-bit ECDSA key has the same level of security as a 3072-bit RSA key (Rivest, Shamir и Adleman) with a significantly smaller key size.

Basic principles of ECDSA

ECDSA is a process that uses elliptic curves and finite fields to “sign” data in such a way that third parties can easily verify the authenticity of the signature, but the signer himself reserves the exclusive opportunity to create signatures. In the case of Bitcoin, the “data” that is signed is a transaction that transfers ownership of bitcoins.
ECDSA has two separate procedures for signing and verifying. Each procedure is an algorithm consisting of several arithmetic operations. The signature algorithm uses the private key, and the verification algorithm uses only the public key.
To use ECDSA, such protocol as Bitcoin must fix a set of parameters for the elliptic curve and its finite field, so that all users of the protocol know and apply these parameters. Otherwise, everyone will solve their own equations, which will not converge with each other, and they will never agree on anything.
For all these parameters, Bitcoin uses very, very large (well, awesomely incredibly huge) numbers. It is important. In fact, all practical applications of ECDSA use huge numbers. After all, the security of this algorithm relies on the fact that these values are too large to pick up a key with a simple brute force. The 384-bit ECDSA key is considered safe enough for the NSA's most secretive government service (USA).

Replacement of ECDSA

Thanks to the hard work done by Peter Wuille (a famous cryptography specialist) and his colleagues on an improved elliptical curve called secp256k1, Bitcoin's ECDSA has become even faster and more efficient. However, ECDSA still has some shortcomings, which can serve as a sufficient basis for its complete replacement. After several years of research and experimentation, a new signature scheme was established to increase the confidentiality and efficiency of Bitcoin transactions: Schnorr's digital signature scheme.
Schnorr's signature takes the process of using “keys” to a new level. It takes only 64 bytes when it gets into the block, which reduces the space occupied by transactions by 4%. Since transactions with the Schnorr signature are the same size, this makes it possible to pre-calculate the total size of the part of the block that contains such signatures. A preliminary calculation of the block size is the key to its safe increase in the future.
Keep up with the news of the crypto world at CoinJoy.io Follow us on Twitter and Medium. Subscribe to our YouTube channel. Join our Telegram channel. For any inquiries mail us at [[email protected]](mailto:[email protected]).
submitted by CoinjoyAssistant to btc [link] [comments]

ECDSA In Bitcoin

Digital signatures are considered the foundation of online sovereignty. The advent of public-key cryptography in 1976 paved the way for the creation of a global communications tool – the Internet, and a completely new form of money – Bitcoin. Although the fundamental properties of public-key cryptography have not changed much since then, dozens of different open-source digital signature schemes are now available to cryptographers.

How ECDSA was incorporated into Bitcoin

When Satoshi Nakamoto, a mystical founder of the first crypto, started working on Bitcoin, one of the key points was to select the signature schemes for an open and public financial system. The requirements were clear. An algorithm should have been widely used, understandable, safe enough, easy, and, what is more important, open-sourced.
Of all the options available at that time, he chose the one that met these criteria: Elliptic Curve Digital Signature Algorithm, or ECDSA.
At that time, native support for ECDSA was provided in OpenSSL, an open set of encryption tools developed by experienced cipher banks in order to increase the confidentiality of online communications. Compared to other popular schemes, ECDSA had such advantages as:
These are extremely useful features for digital money. At the same time, it provides a proportional level of security: for example, a 256-bit ECDSA key has the same level of security as a 3072-bit RSA key (Rivest, Shamir и Adleman) with a significantly smaller key size.

Basic principles of ECDSA

ECDSA is a process that uses elliptic curves and finite fields to “sign” data in such a way that third parties can easily verify the authenticity of the signature, but the signer himself reserves the exclusive opportunity to create signatures. In the case of Bitcoin, the “data” that is signed is a transaction that transfers ownership of bitcoins.
ECDSA has two separate procedures for signing and verifying. Each procedure is an algorithm consisting of several arithmetic operations. The signature algorithm uses the private key, and the verification algorithm uses only the public key.
To use ECDSA, such protocol as Bitcoin must fix a set of parameters for the elliptic curve and its finite field, so that all users of the protocol know and apply these parameters. Otherwise, everyone will solve their own equations, which will not converge with each other, and they will never agree on anything.
For all these parameters, Bitcoin uses very, very large (well, awesomely incredibly huge) numbers. It is important. In fact, all practical applications of ECDSA use huge numbers. After all, the security of this algorithm relies on the fact that these values are too large to pick up a key with a simple brute force. The 384-bit ECDSA key is considered safe enough for the NSA's most secretive government service (USA).

Replacement of ECDSA

Thanks to the hard work done by Peter Wuille (a famous cryptography specialist) and his colleagues on an improved elliptical curve called secp256k1, Bitcoin's ECDSA has become even faster and more efficient. However, ECDSA still has some shortcomings, which can serve as a sufficient basis for its complete replacement. After several years of research and experimentation, a new signature scheme was established to increase the confidentiality and efficiency of Bitcoin transactions: Schnorr's digital signature scheme.
Schnorr's signature takes the process of using “keys” to a new level. It takes only 64 bytes when it gets into the block, which reduces the space occupied by transactions by 4%. Since transactions with the Schnorr signature are the same size, this makes it possible to pre-calculate the total size of the part of the block that contains such signatures. A preliminary calculation of the block size is the key to its safe increase in the future.
Keep up with the news of the crypto world at CoinJoy.io Follow us on Twitter and Medium. Subscribe to our YouTube channel. Join our Telegram channel. For any inquiries mail us at [[email protected]](mailto:[email protected]).
submitted by CoinjoyAssistant to Bitcoin [link] [comments]

Bitcoin (BTC)A Peer-to-Peer Electronic Cash System.

Bitcoin (BTC)A Peer-to-Peer Electronic Cash System.
  • Bitcoin (BTC) is a peer-to-peer cryptocurrency that aims to function as a means of exchange that is independent of any central authority. BTC can be transferred electronically in a secure, verifiable, and immutable way.
  • Launched in 2009, BTC is the first virtual currency to solve the double-spending issue by timestamping transactions before broadcasting them to all of the nodes in the Bitcoin network. The Bitcoin Protocol offered a solution to the Byzantine Generals’ Problem with a blockchain network structure, a notion first created by Stuart Haber and W. Scott Stornetta in 1991.
  • Bitcoin’s whitepaper was published pseudonymously in 2008 by an individual, or a group, with the pseudonym “Satoshi Nakamoto”, whose underlying identity has still not been verified.
  • The Bitcoin protocol uses an SHA-256d-based Proof-of-Work (PoW) algorithm to reach network consensus. Its network has a target block time of 10 minutes and a maximum supply of 21 million tokens, with a decaying token emission rate. To prevent fluctuation of the block time, the network’s block difficulty is re-adjusted through an algorithm based on the past 2016 block times.
  • With a block size limit capped at 1 megabyte, the Bitcoin Protocol has supported both the Lightning Network, a second-layer infrastructure for payment channels, and Segregated Witness, a soft-fork to increase the number of transactions on a block, as solutions to network scalability.

https://preview.redd.it/s2gmpmeze3151.png?width=256&format=png&auto=webp&s=9759910dd3c4a15b83f55b827d1899fb2fdd3de1

1. What is Bitcoin (BTC)?

  • Bitcoin is a peer-to-peer cryptocurrency that aims to function as a means of exchange and is independent of any central authority. Bitcoins are transferred electronically in a secure, verifiable, and immutable way.
  • Network validators, whom are often referred to as miners, participate in the SHA-256d-based Proof-of-Work consensus mechanism to determine the next global state of the blockchain.
  • The Bitcoin protocol has a target block time of 10 minutes, and a maximum supply of 21 million tokens. The only way new bitcoins can be produced is when a block producer generates a new valid block.
  • The protocol has a token emission rate that halves every 210,000 blocks, or approximately every 4 years.
  • Unlike public blockchain infrastructures supporting the development of decentralized applications (Ethereum), the Bitcoin protocol is primarily used only for payments, and has only very limited support for smart contract-like functionalities (Bitcoin “Script” is mostly used to create certain conditions before bitcoins are used to be spent).

2. Bitcoin’s core features

For a more beginner’s introduction to Bitcoin, please visit Binance Academy’s guide to Bitcoin.

Unspent Transaction Output (UTXO) model

A UTXO transaction works like cash payment between two parties: Alice gives money to Bob and receives change (i.e., unspent amount). In comparison, blockchains like Ethereum rely on the account model.
https://preview.redd.it/t1j6anf8f3151.png?width=1601&format=png&auto=webp&s=33bd141d8f2136a6f32739c8cdc7aae2e04cbc47

Nakamoto consensus

In the Bitcoin network, anyone can join the network and become a bookkeeping service provider i.e., a validator. All validators are allowed in the race to become the block producer for the next block, yet only the first to complete a computationally heavy task will win. This feature is called Proof of Work (PoW).
The probability of any single validator to finish the task first is equal to the percentage of the total network computation power, or hash power, the validator has. For instance, a validator with 5% of the total network computation power will have a 5% chance of completing the task first, and therefore becoming the next block producer.
Since anyone can join the race, competition is prone to increase. In the early days, Bitcoin mining was mostly done by personal computer CPUs.
As of today, Bitcoin validators, or miners, have opted for dedicated and more powerful devices such as machines based on Application-Specific Integrated Circuit (“ASIC”).
Proof of Work secures the network as block producers must have spent resources external to the network (i.e., money to pay electricity), and can provide proof to other participants that they did so.
With various miners competing for block rewards, it becomes difficult for one single malicious party to gain network majority (defined as more than 51% of the network’s hash power in the Nakamoto consensus mechanism). The ability to rearrange transactions via 51% attacks indicates another feature of the Nakamoto consensus: the finality of transactions is only probabilistic.
Once a block is produced, it is then propagated by the block producer to all other validators to check on the validity of all transactions in that block. The block producer will receive rewards in the network’s native currency (i.e., bitcoin) as all validators approve the block and update their ledgers.

The blockchain

Block production

The Bitcoin protocol utilizes the Merkle tree data structure in order to organize hashes of numerous individual transactions into each block. This concept is named after Ralph Merkle, who patented it in 1979.
With the use of a Merkle tree, though each block might contain thousands of transactions, it will have the ability to combine all of their hashes and condense them into one, allowing efficient and secure verification of this group of transactions. This single hash called is a Merkle root, which is stored in the Block Header of a block. The Block Header also stores other meta information of a block, such as a hash of the previous Block Header, which enables blocks to be associated in a chain-like structure (hence the name “blockchain”).
An illustration of block production in the Bitcoin Protocol is demonstrated below.

https://preview.redd.it/m6texxicf3151.png?width=1591&format=png&auto=webp&s=f4253304912ed8370948b9c524e08fef28f1c78d

Block time and mining difficulty

Block time is the period required to create the next block in a network. As mentioned above, the node who solves the computationally intensive task will be allowed to produce the next block. Therefore, block time is directly correlated to the amount of time it takes for a node to find a solution to the task. The Bitcoin protocol sets a target block time of 10 minutes, and attempts to achieve this by introducing a variable named mining difficulty.
Mining difficulty refers to how difficult it is for the node to solve the computationally intensive task. If the network sets a high difficulty for the task, while miners have low computational power, which is often referred to as “hashrate”, it would statistically take longer for the nodes to get an answer for the task. If the difficulty is low, but miners have rather strong computational power, statistically, some nodes will be able to solve the task quickly.
Therefore, the 10 minute target block time is achieved by constantly and automatically adjusting the mining difficulty according to how much computational power there is amongst the nodes. The average block time of the network is evaluated after a certain number of blocks, and if it is greater than the expected block time, the difficulty level will decrease; if it is less than the expected block time, the difficulty level will increase.

What are orphan blocks?

In a PoW blockchain network, if the block time is too low, it would increase the likelihood of nodes producingorphan blocks, for which they would receive no reward. Orphan blocks are produced by nodes who solved the task but did not broadcast their results to the whole network the quickest due to network latency.
It takes time for a message to travel through a network, and it is entirely possible for 2 nodes to complete the task and start to broadcast their results to the network at roughly the same time, while one’s messages are received by all other nodes earlier as the node has low latency.
Imagine there is a network latency of 1 minute and a target block time of 2 minutes. A node could solve the task in around 1 minute but his message would take 1 minute to reach the rest of the nodes that are still working on the solution. While his message travels through the network, all the work done by all other nodes during that 1 minute, even if these nodes also complete the task, would go to waste. In this case, 50% of the computational power contributed to the network is wasted.
The percentage of wasted computational power would proportionally decrease if the mining difficulty were higher, as it would statistically take longer for miners to complete the task. In other words, if the mining difficulty, and therefore targeted block time is low, miners with powerful and often centralized mining facilities would get a higher chance of becoming the block producer, while the participation of weaker miners would become in vain. This introduces possible centralization and weakens the overall security of the network.
However, given a limited amount of transactions that can be stored in a block, making the block time too longwould decrease the number of transactions the network can process per second, negatively affecting network scalability.

3. Bitcoin’s additional features

Segregated Witness (SegWit)

Segregated Witness, often abbreviated as SegWit, is a protocol upgrade proposal that went live in August 2017.
SegWit separates witness signatures from transaction-related data. Witness signatures in legacy Bitcoin blocks often take more than 50% of the block size. By removing witness signatures from the transaction block, this protocol upgrade effectively increases the number of transactions that can be stored in a single block, enabling the network to handle more transactions per second. As a result, SegWit increases the scalability of Nakamoto consensus-based blockchain networks like Bitcoin and Litecoin.
SegWit also makes transactions cheaper. Since transaction fees are derived from how much data is being processed by the block producer, the more transactions that can be stored in a 1MB block, the cheaper individual transactions become.
https://preview.redd.it/depya70mf3151.png?width=1601&format=png&auto=webp&s=a6499aa2131fbf347f8ffd812930b2f7d66be48e
The legacy Bitcoin block has a block size limit of 1 megabyte, and any change on the block size would require a network hard-fork. On August 1st 2017, the first hard-fork occurred, leading to the creation of Bitcoin Cash (“BCH”), which introduced an 8 megabyte block size limit.
Conversely, Segregated Witness was a soft-fork: it never changed the transaction block size limit of the network. Instead, it added an extended block with an upper limit of 3 megabytes, which contains solely witness signatures, to the 1 megabyte block that contains only transaction data. This new block type can be processed even by nodes that have not completed the SegWit protocol upgrade.
Furthermore, the separation of witness signatures from transaction data solves the malleability issue with the original Bitcoin protocol. Without Segregated Witness, these signatures could be altered before the block is validated by miners. Indeed, alterations can be done in such a way that if the system does a mathematical check, the signature would still be valid. However, since the values in the signature are changed, the two signatures would create vastly different hash values.
For instance, if a witness signature states “6,” it has a mathematical value of 6, and would create a hash value of 12345. However, if the witness signature were changed to “06”, it would maintain a mathematical value of 6 while creating a (faulty) hash value of 67890.
Since the mathematical values are the same, the altered signature remains a valid signature. This would create a bookkeeping issue, as transactions in Nakamoto consensus-based blockchain networks are documented with these hash values, or transaction IDs. Effectively, one can alter a transaction ID to a new one, and the new ID can still be valid.
This can create many issues, as illustrated in the below example:
  1. Alice sends Bob 1 BTC, and Bob sends Merchant Carol this 1 BTC for some goods.
  2. Bob sends Carols this 1 BTC, while the transaction from Alice to Bob is not yet validated. Carol sees this incoming transaction of 1 BTC to him, and immediately ships goods to B.
  3. At the moment, the transaction from Alice to Bob is still not confirmed by the network, and Bob can change the witness signature, therefore changing this transaction ID from 12345 to 67890.
  4. Now Carol will not receive his 1 BTC, as the network looks for transaction 12345 to ensure that Bob’s wallet balance is valid.
  5. As this particular transaction ID changed from 12345 to 67890, the transaction from Bob to Carol will fail, and Bob will get his goods while still holding his BTC.
With the Segregated Witness upgrade, such instances can not happen again. This is because the witness signatures are moved outside of the transaction block into an extended block, and altering the witness signature won’t affect the transaction ID.
Since the transaction malleability issue is fixed, Segregated Witness also enables the proper functioning of second-layer scalability solutions on the Bitcoin protocol, such as the Lightning Network.

Lightning Network

Lightning Network is a second-layer micropayment solution for scalability.
Specifically, Lightning Network aims to enable near-instant and low-cost payments between merchants and customers that wish to use bitcoins.
Lightning Network was conceptualized in a whitepaper by Joseph Poon and Thaddeus Dryja in 2015. Since then, it has been implemented by multiple companies. The most prominent of them include Blockstream, Lightning Labs, and ACINQ.
A list of curated resources relevant to Lightning Network can be found here.
In the Lightning Network, if a customer wishes to transact with a merchant, both of them need to open a payment channel, which operates off the Bitcoin blockchain (i.e., off-chain vs. on-chain). None of the transaction details from this payment channel are recorded on the blockchain, and only when the channel is closed will the end result of both party’s wallet balances be updated to the blockchain. The blockchain only serves as a settlement layer for Lightning transactions.
Since all transactions done via the payment channel are conducted independently of the Nakamoto consensus, both parties involved in transactions do not need to wait for network confirmation on transactions. Instead, transacting parties would pay transaction fees to Bitcoin miners only when they decide to close the channel.
https://preview.redd.it/cy56icarf3151.png?width=1601&format=png&auto=webp&s=b239a63c6a87ec6cc1b18ce2cbd0355f8831c3a8
One limitation to the Lightning Network is that it requires a person to be online to receive transactions attributing towards him. Another limitation in user experience could be that one needs to lock up some funds every time he wishes to open a payment channel, and is only able to use that fund within the channel.
However, this does not mean he needs to create new channels every time he wishes to transact with a different person on the Lightning Network. If Alice wants to send money to Carol, but they do not have a payment channel open, they can ask Bob, who has payment channels open to both Alice and Carol, to help make that transaction. Alice will be able to send funds to Bob, and Bob to Carol. Hence, the number of “payment hubs” (i.e., Bob in the previous example) correlates with both the convenience and the usability of the Lightning Network for real-world applications.

Schnorr Signature upgrade proposal

Elliptic Curve Digital Signature Algorithm (“ECDSA”) signatures are used to sign transactions on the Bitcoin blockchain.
https://preview.redd.it/hjeqe4l7g3151.png?width=1601&format=png&auto=webp&s=8014fb08fe62ac4d91645499bc0c7e1c04c5d7c4
However, many developers now advocate for replacing ECDSA with Schnorr Signature. Once Schnorr Signatures are implemented, multiple parties can collaborate in producing a signature that is valid for the sum of their public keys.
This would primarily be beneficial for network scalability. When multiple addresses were to conduct transactions to a single address, each transaction would require their own signature. With Schnorr Signature, all these signatures would be combined into one. As a result, the network would be able to store more transactions in a single block.
https://preview.redd.it/axg3wayag3151.png?width=1601&format=png&auto=webp&s=93d958fa6b0e623caa82ca71fe457b4daa88c71e
The reduced size in signatures implies a reduced cost on transaction fees. The group of senders can split the transaction fees for that one group signature, instead of paying for one personal signature individually.
Schnorr Signature also improves network privacy and token fungibility. A third-party observer will not be able to detect if a user is sending a multi-signature transaction, since the signature will be in the same format as a single-signature transaction.

4. Economics and supply distribution

The Bitcoin protocol utilizes the Nakamoto consensus, and nodes validate blocks via Proof-of-Work mining. The bitcoin token was not pre-mined, and has a maximum supply of 21 million. The initial reward for a block was 50 BTC per block. Block mining rewards halve every 210,000 blocks. Since the average time for block production on the blockchain is 10 minutes, it implies that the block reward halving events will approximately take place every 4 years.
As of May 12th 2020, the block mining rewards are 6.25 BTC per block. Transaction fees also represent a minor revenue stream for miners.
submitted by D-platform to u/D-platform [link] [comments]

[UPDATE][M] Ryo Currency 0.5.0.0 "Fermi Paradox"

[UPDATE][M] Ryo Currency 0.5.0.0
https://preview.redd.it/o6o6y8g9rwi41.jpg?width=1920&format=pjpg&auto=webp&s=fe52faff108d163f476907e004cac1ef47aaa1a9
[M] - Mandatory. The update contains security fixes or contains fork update (wallet will stop working after some height reach).
IMPORTANT: The latest version is 0.5.0.1 (contains minor update after 0.5.0.1)
Meet Ryo Currency 0.5.0.0 update - Fermi Paradox. In this update we will discuss 3 updates and do one announcement in the source code, 2 of them will be the first among any Cryptonote projects:
  • Wallet Scan speedup thanks to ECC and multi-threading library. Increased wallet scan speed when processing blockchain. New Elliptic Curve Cryptography library combined with implemented multi-threading that ustilises user's CPU results in reduced block verification up to 5x times compared with previous modes.
  • Plateau emission curve. Ryo's block reward changes every 6-months following a "Plateau Curve" distribution model. The modification of emission curve was initiated and debated with Ryo community. The following fork will finalise and implement that change.Notice: the difference between previous and this model will take effect at block height 394470.Read more about Ryo plateau emission curve
  • Various code edits, refactoring and minor fixes. There are multiple code fixes and edits that could be considered minor when looked in particular, but when looked in general - result in more than 35.000 lines of code being changed making core code more clean, optimised and bugfixed.Check Ryo Github repository
https://preview.redd.it/qv27xxdarwi41.png?width=2000&format=png&auto=webp&s=34836461eb348619f37f75fbc91e94a58dc065f8
Research and studies of Ryo Dev team showed that current ring signature technology as it is - is obsolete and has too many flaws to be considered as a means for reaching the goal of the second level of of privacy. Therefore we will be replacing ring signatures with second generation ZK-proofs technology in observable future and temporarily downgrade privacy level to 1.
In general, you can consider privacy levels like that:
  • level 0 - everyone can look into your wallet and know your transactions (BTC level)
  • level 1 - nobody can see inside of your wallet, but each note has a serial number (yes, this is real life money level and in CN coins is implemented using stealth addresses)
  • level 2 - notes you have don't have a serial number to a guy that gave you one, and no-one can't know if you spent it later (In CN coins it is implemented using ring signatures - which are the failing ones)
What we are saying is over the past year or two, researches stripped ring signatures of their privacy properties so much, that we think it is no longer fair to say that we (or Monero, which is even worse since it has even smaller ring size compared to Ryo) or any other CN project that uses it - meet the level 2 of privacy.
So, summarising in non-tech words what does it mean - when you are doing a transaction and want to imagine how it looks like in system:
  • bitcoin - "I spent output 10, worth 1 BTC and output 22, worth 0.5 BTC"
  • ring signature (current CN coins) - "I spent output 10, 14, 18 or 20, and output 16, 18, 19, or 22"
  • zk-proof - "I spent something."

Fork is scheduled on block 362000: you can check fork countdown on Ryo Currency website

Please update your wallets before this block, or your previous wallet will stop synchronising after the block 362000:
  • Ryo Wallet Atom: download latest Atom installer when annouced update to version 1.5.0, start it and perform reinstall.
  • Ryo cli binaries: download or compile from source updated binaries from Github version 0.5.0.0 and unzip it, and place your wallet key files in new folder.
  • Pool owners and exchanges are notified about updating their nodes to the latest version before the fork.
Questions you might have regarding the fork:
  • What will happen with mining algorithm - will it change or what does "fork" mean - coin is split on 2? No, "fork" basically means major code update that is being activated on a specified block height. There will be no mining algorithm change or chainsplit.
  • Ryo roadmap indicates that you had in plans reaching 100x ring sizes. In light of future introduction of ZK-proofs does it mean that this is not aplicable? Yes, we eventually will be replacing ring signature technology on ZK-proofs, which is more fundamental change than trying to "beat dead horse" with ring signatures.
  • What about atomic swaps? Ryo roadmap indicates it being planned, is it still possible with introducing ZK-proofs? Yes it is! And we aim to implement this feature after all necessary updates in core code. It is important to have everything implemented and tested before adding that feature.
  • What is a ZK-proof? ZK stands for zero-knowledge. In cryptography, a zero-knowledge proof is a method by which one party (the prover) can prove to another party (the verifier) that they know a value x, without conveying any information apart from the fact that they know the value xYou can read more about zero-knowledge proof (with real life examples) here.
  • Will blockchain grow faster (what about tx size) when moving to ZK-proofs? Overall, transactions and blocks using ZK-proofs will be even smaller in size than pre-fork ring signatures with bulletproofs! Plus it enables transactions to be aggregated together - this is obviously a major scalability gain for Ryo Currency.
  • I heard or as far I understand that ZK-proofs are somewhat less private? Does it mean that you are not privacy-oriented project anymore? No, in short - we decided to do this change to second gen. ZK-proofs, because ring signatures as is are too weak on providing enough for us default level of privacy and overall are considered now as an obsolete technology. So we don't want to say that we have a privacy level of 2, when research shows that it is not.
  • Ok, after 0.5.0.0 fork - will we be using uniform payment ID-s to do transactions on exchanges? Yes. There are no changes regarding usage of payment ID-s and integrated addresses. We will be still using ring signatures, but also are announcing our goal on moving to ZK-proofs.
  • What else is there in plans/ideas you have in development of Ryo? Besides all plans and development ongoing with Ryo (wallets, infrastructure, core code and researches) we also developed and improve Mining platform RagerX. It is a all-in-one mining platform that unites a miner, pplns pool, OS, GUI flasher utillity, pool frontend and has advanced social features as well as 2 level affiliate program. In observable future we will add Cryptonight-GPU mining possibillity.We are implementing RagerX so people can mine CPU coins and Ryo simultaneously. Which means more eyes on Ryo, especially from fresh members.
  • Are the ring signature issues that have been discovered are applicable to other ring signature based coins like Monero? Yes.
https://preview.redd.it/x5jqtb8brwi41.png?width=1000&format=png&auto=webp&s=06a0de33b10014e0fdf1b847939718475cbe6fbe
submitted by RyocurrencyRu to ryocurrency [link] [comments]

AES-256 Encryption and similar Integer derivation algorithms ARE NO LONGER SECURE !!!!

In 2016, I wrote about a group of Students at the University of Toronto (i.e. in Toronto, Canada) on a website called AboveTopSecret titled:
,
We can finally break the WikiLeaks Insurance Files! University-of-Toronto Encryption Discovery:

http://www.abovetopsecret.com/forum/thread1120355/pg1
,
This group of students found out they could map the decryption key operations within the AES-256 encryption algorithm as RGB and Greyscale values displayed as a grid of pixels of various axis widths and axis heights. These students seem to have found HIGHLY SPECIFIC EVIDENCE that certain classes of AES encryption keys would correspond to derivable text inputs that corresponded to graphically-based Quadratic curves, simple elliptic curves and logarithmic curves that have a repeatable and provable mathematical relationship to the position and value of ASCII and UNICODE characters within actual and nearby plaintext inputs when the operations of an AES-256 encrypt operation is mapped as a series of bitmaps.
,
This means that certain input text containing characters of a specific ASCII and/or UNICODE value would create encrypted output data, that when graphed as 2D-XY and 3D-XYZ images and animation, create visible curves that would show up onscreen, and when back-propagated, would then correspond to specific characters within an encryption key! In consultation with certain members of the mathematics community within Canada (I'm Canadian!), my initial reporting was met with some significant skepticism within the Reddit community and the general computer science community. After this period and over a series of months (which turned into years!), I was able to confer with some computer science students and graduates in Vancouver, Canada who became convinced of the VALIDITY of my claims AFTER a series of demonstration rendering programs were designed and run which "rendered" the operations of AES-128, AES-192 and AES-256 as a series of real-time video imagery files.
,
After numerous discussions and design meetings with these individuals, we were able to collectively design and code (in C++) some breakthrough shortcuts which allowed us to use common vector-based line and curve detection programs run against the output imagery such that we could actually pattern-match and then correspond SPECIFIC input AES-256 encryption key characters and input key lengths to SPECIFIC plain text and SPECIFIC AES-256 encrypted output.
,
The specific outcome of our research SEEMS to allow us to shortcut the hard decryption process such that the 2-to-the-256th-power number of possible AES-256 key combinations, can be brought down to BELOW 2-to-the-128th-power key combinations which is VERY brute-force computable on a modern (2019) GPU-based grid network of less than 16GPU card's.
,
We have decided to TEST our theories and source code upon the following AES-256 encrypted Wikileaks Insurance Files:
.wlinsurance-20130815-A.aes256 (3.32 GB):,HA256 Hash: 6688fffa9b39320e11b941f0004a3a76d49c7fb52434dab4d7d881dc2a2d7e02
,
.wlinsurance-20130815-B.aes256 (46.48 GB):,SHA256 Hash: 3dcf2dda8fb24559935919fab9e5d7906c3b28476ffa0c5bb9c1d30fcb56e7a4
,
.wlinsurance-20130815-C.aes256 (325.39 GB):,SHA256 Hash: 913a6ff8eca2b20d9d2aab594186346b6089c0fb9db12f64413643a8acadcfe3
,
We EXPECT that passwords (not listed here!) which were previously sent to us and then shared elsewhere on the Reddit website may actually have some significance, but we are currently DISREGARDING them to ensure a valid scientific test and inquiry.
,
We will update the general public on this Reddit site as we find LIKELY candidates for the decryption keys. If we DO FIND the ENTIRE decryption key sets for ANY or ALL the Wikileaks Insurance files, we will IMMEDIATELY disclose them here and on multiple OTHER websites and to world-wide news organizations! So, please do download the Wikileaks Insurance Files NOW !!! And make sure you run the HASHING algorithms on them to make sure the downloaded files MATCH the above hash signatures! Then wait for our decryption key disclosures. Based upon current estimates, we MIGHT see some success by mid-to-Late-December 2019 up to February 2020, but we are NOT SURE AS OF YET how long this will truly take! We will update you on our progress over the next few months. BUT since this “discovery” was made, we have recently heard within various “SigInt Grapevines” and Cryptologic rumour mill circles that it seems just such a technology as we describe above IS ALREADY being used to break much encryption AND BREAK secure hashing algorithms such as SHA1, SHA2, SHA3, etc.
,
THIS HAS IMPLICATIONS for the security and veracity of various crypto-currencies such as Bitcoin, Litecoin, etc. If we CANNOT trust the VERACITY of blockchain systems’ public accounting services, it means ANYONE who has such digital currency holdings AND/OR who has data encrypted using any type of RSA-style and/or Feistel Network-based or singular-curve-based encryption (i.e. AES-256, Blowfish, TwoFish, ThreeFish, CAAST, Elliptic Curve, etc) IS NOW INSECURE and needs to have their encrypted data and crypto-currency holdings revisited!
,
It is MY OPINION based upon 30+YEARS of coding experience that this discovery of using edge and curve detection on graphed AES-256 and OTHER internal encryption algorithms’ operations IS A VIABLE MEANS to derive and determine “Islands of Probability” for likely decryption keys that can be then brute force attacked by inexpensive GPU-based grid processing systems to get the ORIGINAL decryption keys! When you can bring down the impossible-to-compute 2-to-the-256th-power combinations DOWN TO a much more manageable 2-to-the-128th-power combinations, THAT IS A VERY SERIOUS ISSUE THAT NEEDS to be discussed within computer security circles as it affects EVERYTHING from online and ATM banking, to online and card-based payment services to BASIC internet SSL2-based web browser communications systems and even the basic security of your cars and trucks which NOW TEND to have keyless remote entry and startup!
,
Home and Business Systems and Services? This AFFECTS ALL OF THAT !!!
,
I will update this story as I get more information..
submitted by StargateSG7 to privacy [link] [comments]

~ Awareness of a HUGE Vulnerability for All of Us ~


Just looked-up Alexander Vinnik on wiki. Regardless of the charges, I don't know how to feel, why does the US have the right or ability to size a domain name or site ? Doesn't that expose a HUGE vulnerability to all of us and the very few sites we depend upon to interact with cryptocurrency and our funds?
From wiki;
On 28 July 2017, US authorities seized the BTC-e.com domain name and 38% of all customer funds. To repay its customers BTC-e created WEX tokens, which were used to represent customers' seized equity. The WEX tokens represented $1 and were issued to account for the value of customers cryptocurrencies at the time of the theft.
Alexander Vinnik
On 25 July 2017, suspected BTC-e operator Alexander Vinnik was arrested at the behest of the United States Justice Department while vacationing with his family in Greece. Wanted for money laundering by both France and Russia, in addition to the US. Vinnik agreed to be returned to Russia, where he was charged only with fraud. In October 2017 the extradition request by Russia was approved by one Greek court, but the request by the United States was approved by another. The decision to extradite Vinnik to the United States was upheld by the Greek Supreme Court on December 13, 2017. However, in July 2018 Greece agreed to extradite Vinnik to France instead, giving precedent to the European warrant. A final ruling is scheduled for September 19, though Vinnik's lawyer claims that "the decision on Vinnik's extradition to Russia has been made".
A plot to murder Vinnik in prison was uncovered in early 2018. In September 2018, Bloomberg News reported on a potential link between Vinnik and Russian hacking group and intelligence service Fancy Bear. An Elliptic) blockchain analysis of a bitcoin transaction linked Vinnik's former employer, BTC-e to the group and this strengthened the American interest of extradition. Vinnik maintains his innocence of any wrongdoing, but has chosen to cooperate from Greece.
Also, here is a Max Kaiser video that kind of relates to this exact question; Not Your Settlement Layer - Not Your Bitcoin
submitted by riddeledwitholes to CryptoCurrency [link] [comments]

You can call you a Bitcoiner if you know/can explain these terms...

03/Jan/2009
10 Minutes
10,000 BTC Pizza
2016 Blocks
21 Million
210,000 Blocks
51% Attack
Address
Altcoin
Antonopoulos
Asic
Asic Boost
Base58
Batching
Bech32
Bit
Bitcoin Cash
Bitcoin Improvement Proposal (BIP)
Bitcoin SV
Bitmain
Block
Block height
Block reward
Blockchain
Blockexplorer
Bloom Filter
Brain Wallet
Buidl
Change Address
Child pays for parent (CPFP)
Coinbase (not the exchange)
CoinJoin
Coinmarketcap (CMC)
Colored Coin
Confirmation
Consensus
Custodial Wallet
Craig Wright
David Kleinman
Difficulty
Difficulty adjustment
Difficulty Target
Dogecoin
Dorian Nakamoto
Double spend
Elliptic Curve Digital Signature Algorithm (ECDSA)
Ethereum
Faketoshi
Fork
Full Node
Gavin Andresen
Genesis Block
Getting goxed
Halving
Hard Fork
Hardware Wallet
Hash
Hashing
Hierarchical Deterministic (HD) Wallet
Hodl
Hot Wallet
Initial Coin Offering (ICO)
Initial Exchange Offering (IEO)
Ledger
Light Node
Lightning
Litecoin
Locktime
Mainnet
Malleability
Master Private Key
Master Public Key
Master Seed
mBTC
Mempool
Merkle Tree
Mining
Mining Farm
Mining Pool
Mixing
MtGox
Multisig
Nonce
Not your keys,...
Opcode
Orphan block
P2PKH
P2SH
Paper Wallet
Peers
Pieter Wuille
Premining
Private key
Proof of Stake (PoS)
Proof of Work (PoW)
Pruning
Public key
Pump'n'Dump
Replace by Fee (RBF)
Ripemd160
Roger Ver
sat
Satoshi Nakamoto
Schnorr Signatures
Script
Segregated Witness (Segwit)
Sha256
Shitcoin
Sidechain
Signature
Signing
Simplified Payment Verification (SPV)
Smart Contract
Soft Fork
Stratum
Syncing
Testnet
Transaction
Transaction Fees
TransactionId (Txid)
Trezor
User Activated Soft Fork (UASF)
Utxo
Wallet Import Format (WIF)
Watch-Only Address
Whitepaper
List obviously not complete. Suggestions appreciated.
Refs:
https://bitcoin.org/en/developer-glossary https://en.bitcoin.it/wiki/Main_Page https://www.youtube.com/channel/UCgo7FCCPuylVk4luP3JAgVw https://www.youtube.com/useaantonop
submitted by PolaT1x to Bitcoin [link] [comments]

A brief history of the Monero development (Part I)

or a struggle for anonymity and confidentiality of blockchain transaction.
The issues of privacy of electronic currency faced researchers and developers for a long time, long before Bitcoin. In 1991, Tatsuaki Okamoto and Kazuo Ohta from the NTT research laboratory (Japan's largest telecommunications company) introduced 6 criteria for an ideal e-currency, including privacy: "relationship between the user and his purchases must be untraceable by anyone". Nicholas van Saberhagen, an anonymous author behind the work on the CryptoNote protocol, which formed the basis of Monero, in December 2012 summarized these 6 criteria to two specific properties:
Untraceability: for every incoming transaction, all possible senders are equally likely.Unlinkability: for any two outgoing transactions, it is impossible to prove that they were sent to the same person.
None of the other properties are characteristic of Bitcoin, since all transactions are broadcasted publicly. Of course, by the time this work was written, various tumblers made it possible to combine outputs of several transactions and send them through some intermediate address. Also, by that time, some protocols based on the zero-knowledge proof were known, but at that time such evidence was large enough to make them impractical to use.
What was proposed to tackle the issues: firstly, each transaction was signed on behalf of the group, not the individual, as in BTC. To do this, we used the option of an electronic digital signature called "Ring Signature" (further development of the so-called "Group Signature"). However, when implementing a completely anonymous ring signature, a (very high) probability of double spending of coins arose, and therefore the so-called linkable anonymity primitive was taken, which was implemented through a one-time-key mechanism (i.e., when creating each new transaction, the group key changes).
Essentially, although it's certainly worth noting that the CryptoNote implementation used a different scheme of elliptical curves (EdDSA instead of ECDSA, as a result, an elliptic curve with a different equation was used, etc.).
Anonymity achieved, but what about privacy? RingCT to the rescue
You know how it happens: everything seems to be there, but something is missing. The problem with the original CryptoNote protocol was that the user balances were not hidden, and thus, it was possible to analyze the blockchain and deanonymize the members of the group who signed the transaction. An additional problem with hiding balances is that with simple encryption of balances, it is not possible to reach a consensus on whether coins were produced from the thin air or not.
To solve this problem, the developer Shen Noether from Monero Research Lab proposed the use of the Pederson Commitment, which allows the prover to calculate the obligation for the amount without disclosing it and being unable to change it.
Short explanation from Monero Wiki:
As long as the encrypted output amounts created, which include an output for the recipient and a change output back to the sender, and the unencrypted transaction fee is equal to the sum of the inputs that are being spent, it is a legitimate transaction and can be confirmed to not be creating Monero out of thin air.
Thus, it is possible to obtain a ring confidential transaction (hence the name). And, the inquisitive reader will ask, what is wrong this time?
The problem is one, but twofold. On the one hand, the size of the transaction increases with RingCT, which does not have the best effect on scalability and transaction fees. Besides, again, due to the large size of the signature, the number of possible subscribers n is limited. So, the n value in the official software of Monero wallet is from 5 to 20 by default. As a result, the sender anonymity for RingCT1.0 is at most 1 out of 20.
To be continued...
submitted by CUTcoin to cutc0in [link] [comments]

Bitcoin’s Security and Hash Rate Explained

Bitcoin’s Security and Hash Rate Explained
As the Bitcoin hash rate reaches new all-time highs, there’s never been a better time to discuss blockchain security and its relation to the hashing power and the Proof of Work (PoW) that feed the network. The Bitcoin system is based on a form of decentralized trust, heavily relying on cryptography. This makes its blockchain highly secure and able to be used for financial transactions and other operations requiring a trustless ledger.
Far from popular belief, cryptography dates back to thousands of years ago. The same root of the word encryption — crypt — comes from the Greek word ‘kryptos’, meaning hidden or secret. Indeed, humans have always wanted to keep some information private. The Assyrians, the Chinese, the Romans, and the Greeks, they all tried over the centuries to conceal some information like trade deals or manufacturing secrets by using symbols or ciphers carved in stone or leather. In 1900 BC, Egyptians used hieroglyphics and experts often refer to them as the first example of cryptography.
Back to our days, Bitcoin uses cryptographic technologies such as:
  1. Cryptographic hash functions (i.e. SHA-256 and RIPEMD-160)
  2. Public Key Cryptography (i.e. ECDSA — the Elliptic Curve Digital Signature Algorithm)
While Public Key Cryptography, bitcoin addresses, and digital signatures are used to provide ownership of bitcoins, the SHA-256 hash function is used to verify data and block integrity and to establish the chronological order of the blockchain. A cryptographic hash function is a mathematical function that verifies the integrity of data by transforming it into a unique unidentifiable code.
Here is a graphic example to make things more clear:

– Extract from the MOOC (Massive Open Online Course) in Digital Currencies at the University of Nicosia.
Furthermore, hash functions are used as part of the PoW algorithm, which is a prominent part of the Bitcoin mining algorithm and this is what is of more interest to understand the security of the network. Mining creates new bitcoins in each block, almost like a central bank printing new money and creates trust by ensuring that transactions are confirmed only when enough computational power is devoted to the block that contains them. More blocks mean more computation, which means more trust.
With PoW, miners compete against each other to complete transactions on the network and get rewarded. Basically they need to solve a complicated mathematical puzzle and a possibility to easily prove the solution. The more hashing power, the higher the chance to resolve the puzzle and therefore perform the proof of work. In more simple words, bitcoins exist thanks to a peer to peer network that helps validate transactions in the ledger and provides enough trust to avoid that a third party is involved in the process. It also exists because miners give it life by resolving that computational puzzle, through the mining reward incentive they are receiving.
For more info, contact Block.co directly or email at [email protected].
Tel +357 70007828
Get the latest from Block.co, like and follow us on social media:
✔️Facebook
✔️LinkedIn
✔️Twitter
✔️YouTube
✔️Medium
✔️Instagram
✔️Telegram
✔️Reddit
✔️GitHub
submitted by BlockDotCo to u/BlockDotCo [link] [comments]

Inside Chainalysis’ Multimillion-Dollar Relationship With the US Government

Inside Chainalysis’ Multimillion-Dollar Relationship With the US Government


It started with a $9,000 data software contract for the FBI in 2015.
But just five years later, Chainalysis is now the cryptocurrency-tracing equivalent of Palantir, the data analytics company flush with lucrative government software contracts. Chainalysis is, right now, doing millions of dollars worth of business each year with the U.S. government, dwarfing its competitors in the young industry of blockchain surveillance.
The company is by far Uncle Sam’s leading crypto analysis contractor by spending and has become the go-to firm for 10 federal agencies, departments and bureaus.
In short, the feds want to catch up on, and make sense of, the tangled transactional web of bitcoin and other cryptocurrencies to stop all sorts of crimes – and they’ll spend big to do it.
Federal agencies have spent at least $10 million ($10,690,706 to be precise) in American tax dollars on Chainalysis’ tools, services and training since 2015, when Chainalysis was founded, according to 82 records of federal procurement contracts reviewed by CoinDesk. Counting contracts with possible extensions, the company stands to take in more than $14 million.
No competing firm’s federal contracts match Chainalysis', and none are as prevalent across agencies. CipherTrace, led by CEO David Jevans, has made about $6 million through mostly research and development contracts; Elliptic, a British firm, has had only one contract worth $2,450 with the Internal Revenue Service, according to federal data.
Chainalysis’ contracts open a small but prescient window into the federal government’s nascent relationship with the cryptocurrencies some use to evade detection. Bitcoin is a pseudonymous system with inherent traceability – a network moving billions of dollars in value on a public ledger that anyone can track.
And though Chainalysis data show only 1.1 percent of bitcoin transactions were illicit in 2019, that proportion is growing: up 180 percent over the year before.
The U.S. government has responded in kind, raising its spending on Chainalysis every year, the data show. It paid the company over $5 million in 2019, a 20 percent increase from 2018 and a 22,558 percent increase from 2015, when the FBI and the Internal Revenue Service were Chainalysis’ only federal clients.
Nowadays, Chainalysis’ federal money comes from many corners: the Federal Bureau of Investigation, the Drug Enforcement Agency (DEA) and Immigration and Customs Enforcement (ICE), from financial regulators in the Securities and Exchange Commission (SEC), Commodity Futures Trading Commission (CFTC) and Financial Crimes Enforcement Network (FinCEN), from the IRS, the Secret Service (USSS), the Transportation Security Administration (TSA) – even from the Department of the Air Force.
Most have signed six-figure deals with Chainalysis, although some agencies spend more than others. For instance, the TSA spent $40,000 on one contract in 2018 while the IRS, Chainalysis’s biggest federal partner spent $4.1 million over five years – $3.6 million of it since 2018, according to the data.
ICE, with $2.6 million in total contracts, holds the number two spot, and the FBI’s $2.4 million is third.
But the FBI plans to spend millions more in the next two years, and will overtake the IRS as the U.S. government's most prolific Chainalysis partner. On Dec. 18, 2019, it paid Chainalysis $377,500 for "Virtual Currency Tracing Tools," with an option to spend at least $3,628,775 through 2022.
By contrast, when Vice reported on Chainalysis’s government contracts in 2017, the fledgling New York firm had received $330,000 from the FBI, $88,000 from the IRS and $58,000 from ICE in its history.
submitted by VB0783 to u/VB0783 [link] [comments]

In response to ProofOfResearch's misleading article on NEO.

In response to ProofOfResearch's misleading article on NEO.
Yesterday, I was made aware of an article published by ProofOfResearch almost entirely based on a Reddit post that I had written a few months ago. About a month ago I was contacted by Randomshortdude (supposedly ProofOfResearch himself) asking for a permission to use the excerpts from the aforementioned post in his write-up about NEO. As an avid proponent of inclusivity and transparency, I gave a permission to use the contents of my post (the screenshots of the entire conversation will be added below), providing him with links to the Github repos and updating him on the fixes and improvements that have happened since the post had been published. Unknowingly, I continued to work on my projects while my post was being molded into a foundation for an entirely misleading and unfathomably unscientific article.
This post is going to consist of a list of excerpts from the article and the corresponding refutal for each of the listed excerpts.
"This is a semantic issue (example: $BTC having a 1 MB block size + 10 min block time limits TPS; no way around that) meaning that this is immutable"
Bitcoin doesn't have a 10 minute block time limit coded into the platform. The 10 minute average block production time is obtained via a difficulty adjustment formula that readjusts the difficulty of the underlying HashCash PoW algorithm every 2015 blocks (not 2016 due to a bug that was never fixed) based on the average block production time of the previous 2015 blocks.
"I’m not sure it’s even possible to change the digital signature of a protocol without a major hard fork, and there isn’t an alternative digital signature (that I think of), that would make this any more secure."
This excerpt is written in a reference to Point 2 of my Reddit post that criticizes the use of multisigs as a proof of the fact that a quorum (at least 2f + 1) replicas had signed the block hash. The use of multisig instead of signature batching via Schnorr's signatures doesn't affect the security of the nodes or the cryptographic standards used, however, the security of the network as a whole can be compromised due to the decreased number of full/light nodes operating increasing the likelihood of a spam attack being able to degrade the performance of the platform. Apart from that, a digital signature algorithm of the platform can be easily changed by adjusting the versioning of the block and transaction structures.
"Therefore, the consensus algo itself would need to be changed to amend this issue."
The consensus protocol works independently from the cryptographic standards of the platform, so a switch to a different elliptic curve or digital signature algorithm will have zero impact on the consensus algorithm.
"This, in itself, might be what stops $NEO from ever being able to truly scale."
While digital signature algorithms can vary in signing and verification speeds, the difference in the performance of the most popular signature schemes is small enough (except for BLS) to be considered to have a negligible impact on the efficiency of the consensus. As long the nodes are running on an efficient implementation, average network throughput is going continue to be the main bottleneck of the platform.
"Digital signatures are somewhat complex, but not incomprehensible if you really take the time to sit down and understand it. Once again though, it’s going to rely on an understanding of blockchain tech as well to know how this impacts the signing feature of a TX itself as well as pub key creation"
Digital signature algorithms play no role in public key creation as a public key is created simply by multiplying a 256-bit entropy (private key) by a generator (G).


A screenshot of a tweet used in the article.
Baffling. ed25519 DSA does not impact the efficiency of BFT and "blockchain" (whatever the hell that means in this context) as a result. Please also note that NEO does not use ed25519. NEO uses secp256r1 (as opposed to secp256k1 used by Bitcoin, which is a Koblitz curve) which is a NIST-recommended elliptic curve.
"Regular PoW algos are already designed to be Byzantine fault-tolerant already"
While being technically correct, the author dismisses the fact that BFT algorithms offer Byzantine fault-tolerance under rigid mathematical assumptions, in contrast to PoW algorithms which offer Byzantine fault-tolerance under probabilistic assumptions.
"Byzantine Fault Tolerance is not an issue though. It’s actually really useful but for private blockchains."
A common misconception about the use of BFT algorithms in "public" (the author meant permissioned/permission-less) blockchains. BFT algorithms are only required to retain the permissioned status during the agreement phase (meaning that the new candidates will have to wait until the next consensus round to be able to participate in the consensus) and can have a round robin algorithm implemented to select the next pool of validators.
"Of course, in a decentralized protocol — something like that is very hard to achieve."
The research paper quoted in the article examines the efficiency of Castro and Liskov's PBFT (Practical Byzantine Fault Tolerance) algorithm which is dissimilar from dBFT because PBFT doesn't require a primary change after every consensus round, which is impacts the performance in a decentralized network.
“At the other extreme, Hyperledger uses the classic PBFT protocol, which is communication bound: O(N²) where N is the number of nodes. PBFT can tolerate fewer than N/3 failures, and works in three phases in which nodes broadcast messages to each other. First, the pre-prepare phase selects a leader which chooses a value to commit. Next, the prepare phase broadcasts the value to be validated. Finally, the commit phase waits for more than two third of the nodes to confirm before announcing that the value is committed. PBFT has been shown to achieve liveness and safety properties in a partially asynchronous model [11], thus, unlike PoW, once the block is appended it is confirmed immediately. It can tolerate more failures than PoW (which is vulnerable to 25% attacks [26]). However, PBFT assumes that node identities are known, therefore it can only work in the permissioned settings. Additionally, the protocol is unlikely to be able to scale to the network size of Ethereum beacuse of its communication overhead.”
This statement will require a separate post to examine the real-world "permission-lessness" of PoW chains.
"NEO codebase is virtually abandoned."
neo-sharp? neo-go?
"This is purportedly in favor of $NEO 3.0, but there’s no GitHub for $NEO 3.0 (at least not any that I’ve found)"
https://github.com/neo-project/neo/pull/288.
"The idea of it being able to handle 1000 TPS has been thoroughly debunked and it is virtually impossible (probably entirely impossible) for $NEO to create a public blockchain based on DBFT (essentially POS+BFT semantically), that keeps the same encryption signatures (which are probably the only ones that will reliably serve the purpose of crypto where collision resistance must be all but a guarantee)."
dBFT cannot be equated to PoS + BFT as none of those are delegate-centered protocols. How was 1000 TPS thoroughly debunked? With the neo-sharp implementation and Akka being launched, I don't see a reason for dBFT to not be able to surpass 1,000 TPS during peak loads (not during sustained loads though). The excerpt about the collision resistance of "encryption signatures" (?) makes no sense to me.
Here are the promised screenshots of our conversation:
Screenshot 1

Screenshot 2

Screenshot 3
P.S. It is sad to see the so-called "researchers" attracting a mass following despite being clueless about the technology they are trying to review.

submitted by toghrulmaharramov to NEO [link] [comments]

How SegWit Decapitated Bitcoin, and how Bitcoin Cash resurrected Bitcoin before it was too late.

Segregated Witness (SegWit) effectively breaks the existing transaction structure of Bitcoin in order to create 2 transaction IDs instead of 1, and in order to run "future signature scripts" - scripts that aren't defined in the original Bitcoin protocol or whitepaper.
Despite the issue with signature hashes being slightly different potentially being a feature of Bitcoin to reduce second-layer dependency or crutches, this inability to be malleable was targeted as the prime problem with Bitcoin, and that's what lead to Segregated Witness AKA the Decapitation of Bitcoin as well as hardcore Bitcoin enthusiasts and developers who were paying attention to duplicate (fork) the open-source software before it was modified irreversibly by activating SegWit.
There is no need for 2 IDs but this was done in the name of expanding Bitcoin via "second-layer solutions" because, "Bitcoin doesn't work", "It can't scale", and "It has malleability issues" among other supposed issues - All of which are demonstrably false (every day) with Bitcoin Cash. Meanwhile the old chain IDs live on in a ghostly form but they have been rendered utterly meaningless according to the new SegWit scripts.
According to the specification of SegWit (and SegWit users here often outright deny) "signature data [now] becomes optional". Signature data, the data that is required and described by Bitcoin as a fundamental building block as part of the process of verifying transaction data as it is propagated to the network.
Bitcoin uses something called a Elliptical Curve Digital Signature Algorithm: https://en.wikipedia.org/wiki/Elliptic_Curve_Digital_Signature_Algorithm - with SegWit the signature data is separated out from the transactions: "This BIP defines a new structure called a "witness" that is committed to blocks separately from the transaction merkle tree." See for yourself: with SegWit, "signature data is no longer part of the transaction hash" source.
Segwit is "removing this data from the transaction structure committed to the transaction merkle tree" source.
Making transaction structure more modifiable/malleable was presented as making it easier to expand with future software (such as lightning and schnorr, etc) by Blockstream et al. To make it modifiable transaction IDs are tied together, it does this by instead creating TWO transaction IDs and tying them together with a Segregated Witness script..."A new data structure, witness, is defined. Each transaction will have 2 IDs. " source and the witness ID references the original like a mirror copy.
In its own words: "how the transaction was signed are no longer relevant to transaction identification". This effectively makes a ghost chain that continues on as if it is still alive and SegWit takes over. It appears as though that Bitcoin chain is alive but it is, in fact, long dead.
"It allows creation of unconfirmed transaction dependency chains" [... in other words, chains that aren't really Bitcoin ...] "an important feature for offchain protocols such as the Lightning Network". It forces Bitcoin to rely on second-layer solutions, and even calls them dependency chains.
"Since a version byte is pushed before a witness program, and programs with unknown versions are always considered as anyone-can-spend script, it is possible to introduce any new script system with a soft fork." - so essentially the old chain would be able to become effectively deprecated ... was this really a good thing? was there really a problem to be fixed? did we want any new script system like SegWit to define the new blockchain from now on?
Micro-transactions and near instant transactions with extremely low fees are happening daily already with Bitcoin Cash with zero issues and Bitcoin Cash now has 32MB blocks (Instead of 1MB/2MB) without an unnecessary change to transaction data or signature scripts making it fully scale-able. Bitcoin Cash is Bitcoin. Bitcoin Cash continues the legacy of Bitcoin on a daily basis, while SegWit has effectively decapitated the Bitcoin chain moving everyone over to SegWit. Segregated Witness was a takeover of the old chain signature scripts (or rules) with the new ones that don't actually disable the old methods and system but also don't allow any Devs to go back and work with the old scripts anymore, they're considered completely irrelevant now. The document referenced in this post describes the Bitcoin protocol as "current protocol" and then explains the new SegWit "consensus layer", it is the "official Bitcoin Improvement Proposal" (BIP) document that describes an already complete change to the transaction structure that changes Bitcoin forever.
This effectively kills Bitcoin as you know it. Bitcoin has been decapitated. From now on it is SegWit and second-layer or nothing. It forces Bitcoin Devs to work with the new Segregated Witness IDs from now on, or be forgotten, and of course Bitcoin Cash Devs were having none of that. Thankfully they duplicated the entire project before SegWit was activated and continued the Bitcoin legacy through Bitcoin Cash without the needless extra transaction ID ties.
Bitcoin SegWit Devs are now forced to use the new Segregated Witness protocol and any future scripts must run according to the Segregated Witness procotol that has the wtxid and 2 transaction ID format. Not long from now the original txid will likely be deprecated and the ashes scattered into the wind and everything will move over to just using wtxid... and Lightning, Bitcoin SegWit Devs will probably still be called Bitcoin Devs but in reality they are Lightning Devs along with contributing to all the dangers of using second-layer solutions moving forward. This is fairly obvious because, those "old" signature scripts are still being used today with no issues by Bitcoin Cash just fine. Bitcoin Cash has resurrected Bitcoin and the same Bitcoin developer community that was there in the start is now being revived from the ashes in all the hundreds of ecosystem developments over the last few months, by Bitcoin Cash.
submitted by crockscream to btc [link] [comments]

Casa Code - YouTube Bitcoin 101 - Understanding Bitcoin pt. 1 of 3. A Beginner ... The Elliptic Curve Digital Signature Algorithm and raw transactions on Bitcoin Segwit addresses with python - keyhash NSA HACK OF ECC and BITCOIN EXPLAINED BY ANONYMOUS and SNOWDEN DOCS WIKI LEAKS

From Bitcoin Wiki. Jump to: navigation, search. This is a graph of secp256k1's elliptic curve y 2 = x 3 + 7 over the real numbers. Note that because secp256k1 is actually defined over the field Z p, its graph will in reality look like random scattered points, not anything like this. secp256k1 refers to the parameters of the elliptic curve used in Bitcoin's public-key cryptography, and is ... This is a graph of secp256k1's elliptic curve y 2 = x 3 + 7 over the real numbers. Note that because secp256k1 is actually defined over the field Z p, its graph will in reality look like random scattered points, not anything like this. secp256k1 refers to the parameters of the elliptic curve used in Bitcoin's public-key cryptography, and is defined in Standards for Efficient Cryptography (SEC ... Elliptic Curve Digital Signature Algorithm is the most commonly used signature type in Bitcoin. It makes use of the elliptic curve cryptography keypairs referenced in Bitcoin addresses to generate secure signatures from a given message hash. Using Bitcoin Script, it is possible to create novel systems that use elliptical curve digital signatures, including R-Puzzles, multisignature scripts and ... Elliptic Curve Digital Signature Algorithm or ECDSA is a cryptographic algorithm used by Bitcoin to ensure the effective and secure control of ownership of funds.. A few concepts related to ECDSA: private key: A secret number, known only to the person that generated it.A private key can be a randomly generated number but in 2019 most wallets use deterministic key schemes derived from BIP 0032. Elliptic Curve Digital Signature Algorithm (ECDSA) ist ein kryptographischer Algorithmus, der von Bitcoin verwendet wird, um sicherzustellen, dass das Geld nur von seinen rechtmäßigen Inhabern ausgegeben werden kann.

[index] [40346] [13547] [39658] [30342] [36615] [41787] [46880] [23633] [33363] [38947]

Casa Code - YouTube

Quantenrechner werden wahrscheinlich in der Zukunft verfügbar sein, aber der Bitcoin ist durch eine 2-Layer-Sicherheitstechnik (SHA-256, Elliptic Curve Digital Signature Algorithm) dagegen ... Want to see what the SNOWDEN DOCS and WIKI LEAKS really says about the NSA and the NSA ... Skip navigation Sign in. Search. Loading... Close. This video is unavailable. Watch Queue Queue. Watch ... https://en.wikipedia.org/wiki/Elliptic_Curve_Digital_Signature_Algorithm https://hackernoon.com/what-is-the-math-behind-elliptic-curve-cryptography-f61b25253... Using python 3.6 to generate segwit addresses. This video is part of a series of tutorials about the bitcoin protocol. In this video, I'll generate the key pair and the key hash that lays at the ... Multiply your Bitcoins. Learn more here: http://btcpromo.btcautotraders.com

#