Original Bitcoin client/API calls list - BitcoinWiki

Mining Fedoracoin

The subreddit for all things to do with mining fedoracoin.
[link]

Original Bitcoin client/API calls list

submitted by cryptodev to cryptodev [link] [comments]

dfi-cli command list

Hi there,
I'm currently running a masternode within testnet and would love to get some blockchain data to consolidate. e.g. number of masternodes, transaction per seconds,...
Of course this can be expanded over time, but first I have to start by getting at least some data.
Since the DeFi-Chain is a Bitcoin Fork I quickly found the following API calls list.
https://en.bitcoin.it/wiki/Original_Bitcoin_client/API_calls_list
However I would like to know if there is a separate list for dfi specific commands which have been added (e.g. listmasternodes).
submitted by starman578 to defiblockchain [link] [comments]

BitN00B: Help with Python/JSON call : getNewAddress(account) - fail

When making a JSON call, RPC to bitcoind, what is "account" parameter in getNewAddress(account).
Does anyone have actual code to demo this? This is frustrating given how much time I have spent ( a day ),
trying to get this to work in code, trying different things, googling all over, following things to a dead end.

In my Bitcoin QT, I see no reference to "account", I don't know what to put there as a parameter.

Reference:
https://en.bitcoin.it/wiki/Original_Bitcoin_client/API_calls_list#Full_list

If I leave it blank, or I make up something to put there, I get a socket timeout.
I can successfully call: getblockchaininfo() (no params), and a few others with no socket timeout, but not getNewAddress. Anything and everything requiring a parameter fails.
--
Also if anyone can help, I please need a clear concise example of sending a transaction. I can find no good code examples on how to create a raw transaction and send with any Python/RPC/Bitcoind library out there. None. It should not take more than a few lines of code to send a transaction.
  1. set variables in a data structure
  2. make a call to send the transaction (that's it). The library will take params from the data structure, construct a raw transaction, convert that raw transaction to the format it needs when sending over http (json/rpc), as it does and I understand it to work that way.
    I would like to have the raw transaction printed out to debug, both raw transaction and the actual hex code that is sent.
    Thank You,
    JC
submitted by ThisCryptoFail to Bitcoin [link] [comments]

where can i get the latest version of command list of `bitcoin-cli`?

I tried command like getaccount, as listed in https://en.bitcoin.it/wiki/Original_Bitcoin_client/API_calls_list.
but is deprecated when i use it in Bitcoin Core v0.17.0
> bitcoin-cli getaccount 18e9LCujZeNvdYh9WRcavPD2gizcNNB7rK error code: -32 error message: getaccount is deprecated and will be removed in V0.18. To use this command, start bitcoind with -deprecatedrpc=accounts. 
submitted by jasonzhouu to Bitcoin [link] [comments]

bitcoin-cli question with bitcoin core

I'm finding it hard to find all the possible parameters/commands/calls you can run with bitcoin-cli
Using ./bitcoin-cli -? doesn't give me all the possible commands I believe. For instance if I want to add run a "setban" through bitcoin-cli something like:
./bitcoin-cli setban 5.129.191.17/32 add 31557600 
I don't see this usage documented anywhere.. is it anywhere to be found?
I've found this but it's pretty much inline with the
./bitcoin-cli -? 
https://en.bitcoin.it/wiki/Original_Bitcoin_client/API_calls_list#Full_list
ANSWER:
https://bitcoin.org/en/developer-reference#remote-procedure-calls-rpcs
submitted by miketwenty1 to Bitcoin [link] [comments]

Easy UASF Node in Debian VM tutorial

So if you have a moderately powerful gaming desktop with a Quad-Core CPU like an i5 or better and 8+GB of RAM, you can easily run your own little UASF node in the background. Once it's done syncing with the network, you won't even notice it's there. Here's how.
You will need :
The following assumes you know how to install Linux in a Virtual Machine
Step I. - Installation. Go through expert install and set up a base system with only ssh server enabled. For partitioning, you can do just one big disk and everything in one partition, but if you happen to have a computer that has both SSD's and HDD's, it would be optimal to create two virtual disks and use a small one for the OS on the SSD and a larger one on the HDD in a custom mount point for the blockchain. Reboot and ssh into the server.
Step II. - Build requirements. A few things need to be taken care of. First, you'll want to edit the /etc/network/interfaces file and set up a static IP. Once that's done, stop by your router and make sure that traffic on port 8333 is forwarded to your debian VM. Then, install some packages we need :
apt update apt upgrade apt install build-essential autoconf libssl-dev libboost-dev libboost-chrono-dev libboost-filesystem-dev libboost-program-options-dev libboost-system-dev libboost-test-dev libboost-thread-dev libevent-dev git libtool pkg-config 
The next one is a bit more annoying. We need Berkeley DB 4.8, and it's a little old. It's packages are in the Debian Squeeze archives, so in the /etc/apt/sources.list file, we need to add :
deb http://archive.debian.org/debian/ squeeze main 
Then remember to update again, and install the thing :
apt install libdb4.8++-dev libdb4.8-dev 
If you intend to also throw on xorg and a UI, you will want Qt as well. Otherwise skip this last step.
install libqt4-dev libprotobuf-dev protobuf-compiler libqrencode-dev 
Step III. - Build time
#Starting from /home/yourUser git clone https://github.com/UASF/bitcoin.git -b 0.14-BIP148 cd bitcoin ./autogen.sh ./configure make make install 
That's it! Well, mostly. Start it with
bitcoind -daemon -disablewallet -datadir=/whereveyou/want/youblockchain 
...and wait about thirty hours to sync with the network. You may want to visit the /whereveyou/want/youblockchain directory and create a permanent bitcoin.conf in there. To enable RPC calls to the server and get it to accept bitcoin-cli commands you'll want to use it to create a usepassword and copy that to your user's /.bitcoin/bitcoin.conf.
Minimal bitcoin.conf example
daemon=1 listen=1 disablewallet=1 server=1 rpcuser=bob rpcpassword=bob's password 
Security I recommend you disable password login and use private key authentication only on ssh, and also restrict iptables rules to the bare minimum that must be allowed for this application. You will need this in your iptables script :
# Allows BITCOIN traffic from anywhere -A INPUT -p tcp --dport 8333 -j ACCEPT # Allows RPC calls to the bitcoin server from localhost -A INPUT -p tcp -s 127.0.0.1 --dport 8332 -j ACCEPT 
Useful ressources :
submitted by the_bolshevik to Bitcoin [link] [comments]

Can some one post developer examples of using bitcoin core to form SegWit address's and transactions?

https://bitcoincore.org/en/segwit_wallet_dev/
Is just not helpful to the everyday person. None of the examples actually use Core, nor do they talk about practical minimum changes needed for a real life migration.
A migration guide with real examples using bitcoin-core and testnet would really help people understand what its going to take to migrate.
I read that the RPC is changing how it returns bock data. And this can break many implementations. Is there a list of the other RPC changes?
It would be nice to get this updated with the new 13.1 commands https://en.bitcoin.it/wiki/Original_Bitcoin_client/API_calls_list
And I dont see anything in here too, https://bitcoin.org/en/developer-reference#bitcoin-core-apis
Im looking for lists of new commands for generating segwit address's or transactions. And perhaps what the new Transactions JSON objects returned will look like
We cant save any space with SegWit unless services actually use it. And a few Cents saved on fee's means nothing compared to headache, money, and effort of paying devs to rewrite their code to use it. So staying ahead of this would be really helpfull to everyone.
submitted by AnonymousRev to Bitcoin [link] [comments]

[Dev] Accounting and the reference client

Bit of an odd update this week, but as the issue is currently highly visible, it seems a good time to say this:
Do not use the accounting system in the reference client for anything important.
If you're not using RPC (the commands listed under https://en.bitcoin.it/w/index.php?title=Original_Bitcoin_client/API_calls_list&oldid=48664 ), this probably won't mean much to you, and you can probably safely ignore this post.
While I'm not aware of the full details of the emergency migration of Moolah's platform from V1 to V2, I do know that the accounting system in the reference client was part of the problem with V1. This isn't a Dogecoin-specific matter, this is something we've inherited from Bitcoin Core. The accounting system has a lot of limitations, and the opinion from the Bitcoin Core developers is that it's better to simply remove it ( https://github.com/bitcoin/bitcoin/issues/3816 ) than trying to fix it.
There's no timescale for removing the functionality yet, but you can expect that in time it will be cut out of the client. If you're already using the accounting system for an existing service, please start working on extracting transaction data to your own database, and developing an accounting system from there.
If you're considering writing a new service, please do not attempt to use the integrated accounting system.
If anyone wants to write a framework for extracting transaction data regularly and synchronising it into a database, and running accounting from that database, I believe many would be incredibly grateful.
Beyond that; a 1.7.2 client beta should be out essentially as soon as we get enough developers into a room together to agree it's ready. This brings in a huge number of bug fixes, and will be highly recommended (but still not required) for all users currently on the 1.6 client.
Lastly, we're starting to see UI mockups showing up; the development team are focusing on keeping the reference client minimal, and personally I hope to reduce the interaction with the wallet, not add more to it. Payment protocol will help with this, and ideally I'm hoping we can develop a protocol to allow sites to request addresses from the wallet automatically (without a cut & paste step). Less is definitely more here, especially as any added features increase the amount of code in which subtle security issues can potentially arise.
Others are of course welcome to fork the reference client and extend it. My preferred option would be to consider a stand-alone "Social dashboard" application, if there's definitely a desire to do this, although most of the options listed would work just as well from an HTML 5 website IMHO.
Next couple of weeks are going to be crazy busy my end, so don't panic if you don't hear from me before August. I'll be around, as will the other devs, just perhaps a little quieter.
submitted by rnicoll to dogecoindev [link] [comments]

Open Source web based wallet UI designed for micro-PCs

Hey guys!
Last year I was the developer of a device called the Staker. The person promising me a share of revenue could not come through on his promise of marketing and selling the device.
I have released the source code of the project, and have written a blog post with deployment instructions included.
I'm bringing it to everyones attention so that if there is something I can do to make this more useful, it will be pointed out to me. With the recent popularity of the 21.co device, I thought this may be of use to a number of folks as well.
It can work for any cryptocurrency that utilizes the standard JSON-RPC interface and functions found in the original bitcoin source. The list of cryptocurrencies that don't support this interface, is much shorter than the list of them that do. So, it can work with almost any altcoin, as well as bitcoin.
The web app is designed to be ran from a micro-PC that already has the cryptocurrency wallet daemon installed and running. It is also meant to only be used on trusted networks, such as at home or at a private office. The UI and the backend are all password protected, but you are still better off safe than sorry.
There are also some screenshots of the UI here
Enjoy :) Let me know if you :
submitted by kamronkennedy to Bitcoin [link] [comments]

How can I see transaction comments?

In the JSON RPC API (https://en.bitcoin.it/wiki/Original_Bitcoin_client/API_calls_list) there's a call named 'sendtoaddress' that gets an input for

I've created a number of transactions but cannot see the comments on my bitcoin-qt or blockchain.info.
Any ideas?
submitted by xabbix to Bitcoin [link] [comments]

Has anyone had luck performing Escrow (M-of-N) transactions using either Blockchain.info wallet's direct support, or the bitcoind JSON API?

Blockchain.info supports Escrow natively now, but you've got to enter the public key of all the addresses you want to enter into escrow for the transaction, and their own instructions for how to get the 130 char hex public key from an address in another bci wallet doesn't appear to work.
It says "QR code icon in the receive coins tab", but that does not show a public key at all.. perhaps one day in the past it did?
They mention if all the addresses are already in the present wallet, it will just get the public keys for you.. but an Escrow transaction made from addresses all in the same wallet is kind of useless. :P
The 0.7 bitcoind JSON API also supports all of the calls needed to curate an Escrow transaction: addmultisigaddress to create the receiving multisig address, and createrawtransaction to author and sign the spend transaction(s) involved. (Thanks Ferroh for head's up on this second method. ;3)
So I'm stuck at the "how to see public keys?" step with the Blockchain.info wallet solution. I expect I could import one of the wallet backups into bitcoind to read back the public keys, but that defeats all related convenience. And I am trying out the bitcoind solution, but it's slow work blindly groping for the right incantation.
Anyone have any field experience in this bidness? :D
submitted by jesset77 to Bitcoin [link] [comments]

How do I get *any* address info?

On Blockchain.info, I can type in any Bitcoin address and see the incoming transactions and the sum etc.
I was looking through the BitcoinD server api (1) but cannot see an api call for anything like that. How do they do it?
1) https://en.bitcoin.it/wiki/Original_Bitcoin_client/API_Calls_list
submitted by nixle to Bitcoin [link] [comments]

Does anyone have experience with the ruby gem bitcoin-client?

I'm a returning shibe programming pup and have just started to dabble with the ruby gem called bitcoin-client. For those that don't know it implements all the methods on http://en.bitcoin.it/wiki/Original_Bitcoin_client/API_Calls_list
I'm getting some unexpected and inconsistent results, eg listaccounts shows a blank named account with a negative balance, balance shows my real balance but listaccounts shows the same address having slightly more doge, listaddress also shows an empty address having 40k coins in it.
Is this gem known to be untrustworthy? Should I use something else instead?
submitted by frustrated_coder to dogecoindev [link] [comments]

Compile the Ultracoin Wallet on Linux

Since documentation and how to guides on ultracoin are almost non existent. I thought I could make one to share with you guys. I wanted to set up a Linux wallet (ultimately to make a node), since there are no guides on this specifically, I was lost. After some through googling, I finally got this ultracoind up and running. Here's a guide for ubuntu.
*Update ubuntu
sudo apt-get update
*install git to download the source code
sudo apt-get install git
*install the other necessary components
sudo apt-get install build-essential libboost1.48-all-dev libcurl4-openssl-dev libdb5.1-dev libdb5.1++-dev
*navigate to the home directory
cd ~ *download the ultracoin source code
git clone git://github.com/ziggy909/ultracoin
*navigate to the downloaded files
cd ~ *navigate to the src file in the source code
cd ultracoin/src
*build ultracoind !This will take a while!
make -f makefile.unix USE_UPNP=-
*go back to the home directory
cd /root
*make the directory for the .conf file
mkdir .Ultracoin
*navigate to the new directory
cd .Ultracoin
*make and edit the .conf file
nano Ultracoin.conf
*paste this info in the .conf file
rpcuser="USERNAME" CHANGE THIS TO SOMETHING ELSE rpcpassword="PASSWORD" CHANGE THIS TO SOMETHING ELSE rpcport=44101 port=44100 daemon=1 addnode=37.187.98.146 addnode=85.23.43.220 addnode=72.44.79.45 addnode=31.3.65.40 addnode=184.72.188.245 addnode=192.241.203.159 addnode=123.168.85.188 addnode=107.170.47.232
*Exit out of nano press control X, press y, then press enter
*go back to the src directory
cd /root/ultracoin/src
*start the dameon
./Ultracoind -daemon
That's it!
To find out how to use the daemon, go here
If you run into this error when compiling it -
If this - g++: internal compiler error: Killed (program cc1plus) Please submit a full bug report, with preprocessed source if appropriate. See for instructions. make: *** [obj/main.o] Error 4
it is most likely caused by a lack of ram to libboost
to fix it do this -
cd sudo dd if=/dev/zero of=/swapfile bs=64M count=16 sudo mkswap /swapfile sudo swapon /swapfile
I set this node up on a $5 vps from https://www.digitalocean.com/ I cannot guarantee the uptime of any of the nodes listed. I obtained them from my -qt client. Feel free to comment and message me more permanent nodes as I couldn't find any listed for ultracoin.
I am no linux expert, but I believe this information to be correct. If I made any mistakes, please correct me.
submitted by howardrya to ultracoinmining [link] [comments]

Developers: Super-simple jQuery code for making JSON-RPC calls to Bitcoin Client

In working on some proof-of-concept stuff, I ran in to a bunch of issues communicating with the Bitcoin Client server. Though there are a number of existing libraries for both JSON-RPC in general, and communicating with the Bitcoin Client, they're all a bit heavier than I wanted. So, I dug through the source code and came up with the smallest, easiest way to connect to the server using nothing but some Javascript and jQuery:
$.ajax({ url: 'http://RPC_USERNAME:[email protected]:RPC_PORT', dataType: 'json', type: 'POST', contentType: 'application/json', data: '{"method": "API_METHOD"}', // For parameters: //data: '{"method": "API_METHOD", "params": ["PARAMETERS"]}', timeout: 15000, success: function(data) { // Response lives in data.result (data.result.version, etc) }, error: function(oops) { // oops.statusText returns error } }); 
Running this code will access a wallet on the same machine. I haven't done much testing of different calls or error handling, but this should be enough to get you started. Replace RPC_USERNAME, RPC_PASSWORD, and RPC_PORT (usually 8332) with the data set in your bitcoin.conf file, and reference the API calls list to see what you can do. With a properly-configured server, I imagine you could change 127.0.0.1 to a URL or IP and access a web-based client.
This code is 100% open and free for anyone to do whatever they want with it, obviously. No credit necessary. Consider it under a WTFPL License. I will kindly take Bitcoin donations, of course: 1KSEKy3XTRxJd7CqKciSsnx752VRaibBWr. Enjoy!
submitted by 54mf to Bitcoin [link] [comments]

How do I pay myself from my own p2pool node?

Since all wallets are based off of the original bitcoin wallet, I'm using this page as a reference. I'm running my p2pool node on Xubuntu 12.04. I open up terminal and type in:
monocled getbalance
It shows that I have a balance of 50.00000000
monocled listtransactions
This command is telling me that both blocks are mature
monocled validateaddress
This tells me that address (which I generated separately from the p2pool node's computer) is a valid address and is not a wallet that belongs to the server wallet.
So the question becomes, how do I send the payments in my p2pool node's wallet to my wallet/valid address ?
It looks like there are three different send commands and the wiki doesn't do a good job of explaining why I would use one send command over the other.
submitted by web_runner to vertcoin [link] [comments]

Working on an interface to Bitcoin-Qt's / bitcoind's API calls.

Right now, all it does that might be a bit handy is show you which addresses have how many bitcoins.
GitHub
Needed: python 2.7, wxPython 2.8
It is a bit rough at the moment, appearance-wise: a screenshot
I made this because the bitcoin-qt wallet does not have a way (that I've seen) to easily see all addresses, including un-labelled ones. There's the debug console, but that isn't really "easy", especially if you have a lot of addresses... I also use Armory, which will show you all addresses, but it is slow to start and a huge memory hog -- and it won't use the original client's wallet.
You'll need to set up the bitcoin.conf file to accept JSON-RPC commands (see this sample conf -- set server=1 and rpcuserpcpassword to whatever; this script will read them from the file)
It should work on Windows, *nix, and Mac, but I've only tested it in Windows.
If there's any interest, I might work on fleshing this out into a fuller interface. There's a lot of API calls that might be of use to someone.
PS: if you can think of a better name than "advbtc" please suggest it; I am terrible at naming things.
submitted by lowpass to Bitcoin [link] [comments]

Gridcoin 5.0.0.0-Mandatory "Fern" Release

https://github.com/gridcoin-community/Gridcoin-Research/releases/tag/5.0.0.0
Finally! After over ten months of development and testing, "Fern" has arrived! This is a whopper. 240 pull requests merged. Essentially a complete rewrite that was started with the scraper (the "neural net" rewrite) in "Denise" has now been completed. Practically the ENTIRE Gridcoin specific codebase resting on top of the vanilla Bitcoin/Peercoin/Blackcoin vanilla PoS code has been rewritten. This removes the team requirement at last (see below), although there are many other important improvements besides that.
Fern was a monumental undertaking. We had to encode all of the old rules active for the v10 block protocol in new code and ensure that the new code was 100% compatible. This had to be done in such a way as to clear out all of the old spaghetti and ring-fence it with tightly controlled class implementations. We then wrote an entirely new, simplified ruleset for research rewards and reengineered contracts (which includes beacon management, polls, and voting) using properly classed code. The fundamentals of Gridcoin with this release are now on a very sound and maintainable footing, and the developers believe the codebase as updated here will serve as the fundamental basis for Gridcoin's future roadmap.
We have been testing this for MONTHS on testnet in various stages. The v10 (legacy) compatibility code has been running on testnet continuously as it was developed to ensure compatibility with existing nodes. During the last few months, we have done two private testnet forks and then the full public testnet testing for v11 code (the new protocol which is what Fern implements). The developers have also been running non-staking "sentinel" nodes on mainnet with this code to verify that the consensus rules are problem-free for the legacy compatibility code on the broader mainnet. We believe this amount of testing is going to result in a smooth rollout.
Given the amount of changes in Fern, I am presenting TWO changelogs below. One is high level, which summarizes the most significant changes in the protocol. The second changelog is the detailed one in the usual format, and gives you an inkling of the size of this release.

Highlights

Protocol

Note that the protocol changes will not become active until we cross the hard-fork transition height to v11, which has been set at 2053000. Given current average block spacing, this should happen around October 4, about one month from now.
Note that to get all of the beacons in the network on the new protocol, we are requiring ALL beacons to be validated. A two week (14 day) grace period is provided by the code, starting at the time of the transition height, for people currently holding a beacon to validate the beacon and prevent it from expiring. That means that EVERY CRUNCHER must advertise and validate their beacon AFTER the v11 transition (around Oct 4th) and BEFORE October 18th (or more precisely, 14 days from the actual date of the v11 transition). If you do not advertise and validate your beacon by this time, your beacon will expire and you will stop earning research rewards until you advertise and validate a new beacon. This process has been made much easier by a brand new beacon "wizard" that helps manage beacon advertisements and renewals. Once a beacon has been validated and is a v11 protocol beacon, the normal 180 day expiration rules apply. Note, however, that the 180 day expiration on research rewards has been removed with the Fern update. This means that while your beacon might expire after 180 days, your earned research rewards will be retained and can be claimed by advertising a beacon with the same CPID and going through the validation process again. In other words, you do not lose any earned research rewards if you do not stake a block within 180 days and keep your beacon up-to-date.
The transition height is also when the team requirement will be relaxed for the network.

GUI

Besides the beacon wizard, there are a number of improvements to the GUI, including new UI transaction types (and icons) for staking the superblock, sidestake sends, beacon advertisement, voting, poll creation, and transactions with a message. The main screen has been revamped with a better summary section, and better status icons. Several changes under the hood have improved GUI performance. And finally, the diagnostics have been revamped.

Blockchain

The wallet sync speed has been DRASTICALLY improved. A decent machine with a good network connection should be able to sync the entire mainnet blockchain in less than 4 hours. A fast machine with a really fast network connection and a good SSD can do it in about 2.5 hours. One of our goals was to reduce or eliminate the reliance on snapshots for mainnet, and I think we have accomplished that goal with the new sync speed. We have also streamlined the in-memory structures for the blockchain which shaves some memory use.
There are so many goodies here it is hard to summarize them all.
I would like to thank all of the contributors to this release, but especially thank @cyrossignol, whose incredible contributions formed the backbone of this release. I would also like to pay special thanks to @barton2526, @caraka, and @Quezacoatl1, who tirelessly helped during the testing and polishing phase on testnet with testing and repeated builds for all architectures.
The developers are proud to present this release to the community and we believe this represents the starting point for a true renaissance for Gridcoin!

Summary Changelog

Accrual

Changed

Most significantly, nodes calculate research rewards directly from the magnitudes in EACH superblock between stakes instead of using a two- or three- point average based on a CPID's current magnitude and the magnitude for the CPID when it last staked. For those long-timers in the community, this has been referred to as "Superblock Windows," and was first done in proof-of-concept form by @denravonska.

Removed

Beacons

Added

Changed

Removed

Unaltered

As a reminder:

Superblocks

Added

Changed

Removed

Voting

Added

Changed

Removed

Detailed Changelog

[5.0.0.0] 2020-09-03, mandatory, "Fern"

Added

Changed

Removed

Fixed

submitted by jamescowens to gridcoin [link] [comments]

Dragonchain Great Reddit Scaling Bake-Off Public Proposal

Dragonchain Great Reddit Scaling Bake-Off Public Proposal

Dragonchain Public Proposal TL;DR:

Dragonchain has demonstrated twice Reddit’s entire total daily volume (votes, comments, and posts per Reddit 2019 Year in Review) in a 24-hour demo on an operational network. Every single transaction on Dragonchain is decentralized immediately through 5 levels of Dragon Net, and then secured with combined proof on Bitcoin, Ethereum, Ethereum Classic, and Binance Chain, via Interchain. At the time, in January 2020, the entire cost of the demo was approximately $25K on a single system (transaction fees locked at $0.0001/txn). With current fees (lowest fee $0.0000025/txn), this would cost as little as $625.
Watch Joe walk through the entire proposal and answer questions on YouTube.
This proposal is also available on the Dragonchain blog.

Hello Reddit and Ethereum community!

I’m Joe Roets, Founder & CEO of Dragonchain. When the team and I first heard about The Great Reddit Scaling Bake-Off we were intrigued. We believe we have the solutions Reddit seeks for its community points system and we have them at scale.
For your consideration, we have submitted our proposal below. The team at Dragonchain and I welcome and look forward to your technical questions, philosophical feedback, and fair criticism, to build a scaling solution for Reddit that will empower its users. Because our architecture is unlike other blockchain platforms out there today, we expect to receive many questions while people try to grasp our project. I will answer all questions here in this thread on Reddit, and I've answered some questions in the stream on YouTube.
We have seen good discussions so far in the competition. We hope that Reddit’s scaling solution will emerge from The Great Reddit Scaling Bake-Off and that Reddit will have great success with the implementation.

Executive summary

Dragonchain is a robust open source hybrid blockchain platform that has proven to withstand the passing of time since our inception in 2014. We have continued to evolve to harness the scalability of private nodes, yet take full advantage of the security of public decentralized networks, like Ethereum. We have a live, operational, and fully functional Interchain network integrating Bitcoin, Ethereum, Ethereum Classic, and ~700 independent Dragonchain nodes. Every transaction is secured to Ethereum, Bitcoin, and Ethereum Classic. Transactions are immediately usable on chain, and the first decentralization is seen within 20 seconds on Dragon Net. Security increases further to public networks ETH, BTC, and ETC within 10 minutes to 2 hours. Smart contracts can be written in any executable language, offering full freedom to existing developers. We invite any developer to watch the demo, play with our SDK’s, review open source code, and to help us move forward. Dragonchain specializes in scalable loyalty & rewards solutions and has built a decentralized social network on chain, with very affordable transaction costs. This experience can be combined with the insights Reddit and the Ethereum community have gained in the past couple of months to roll out the solution at a rapid pace.

Response and PoC

In The Great Reddit Scaling Bake-Off post, Reddit has asked for a series of demonstrations, requirements, and other considerations. In this section, we will attempt to answer all of these requests.

Live Demo

A live proof of concept showing hundreds of thousands of transactions
On Jan 7, 2020, Dragonchain hosted a 24-hour live demonstration during which a quarter of a billion (250 million+) transactions executed fully on an operational network. Every single transaction on Dragonchain is decentralized immediately through 5 levels of Dragon Net, and then secured with combined proof on Bitcoin, Ethereum, Ethereum Classic, and Binance Chain, via Interchain. This means that every single transaction is secured by, and traceable to these networks. An attack on this system would require a simultaneous attack on all of the Interchained networks.
24 hours in 4 minutes (YouTube):
24 hours in 4 minutes
The demonstration was of a single business system, and any user is able to scale this further, by running multiple systems simultaneously. Our goals for the event were to demonstrate a consistent capacity greater than that of Visa over an extended time period.
Tooling to reproduce our demo is available here:
https://github.com/dragonchain/spirit-bomb

Source Code

Source code (for on & off-chain components as well tooling used for the PoC). The source code does not have to be shared publicly, but if Reddit decides to use a particular solution it will need to be shared with Reddit at some point.

Scaling

How it works & scales

Architectural Scaling

Dragonchain’s architecture attacks the scalability issue from multiple angles. Dragonchain is a hybrid blockchain platform, wherein every transaction is protected on a business node to the requirements of that business or purpose. A business node may be held completely private or may be exposed or replicated to any level of exposure desired.
Every node has its own blockchain and is independently scalable. Dragonchain established Context Based Verification as its consensus model. Every transaction is immediately usable on a trust basis, and in time is provable to an increasing level of decentralized consensus. A transaction will have a level of decentralization to independently owned and deployed Dragonchain nodes (~700 nodes) within seconds, and full decentralization to BTC and ETH within minutes or hours. Level 5 nodes (Interchain nodes) function to secure all transactions to public or otherwise external chains such as Bitcoin and Ethereum. These nodes scale the system by aggregating multiple blocks into a single Interchain transaction on a cadence. This timing is configurable based upon average fees for each respective chain. For detailed information about Dragonchain’s architecture, and Context Based Verification, please refer to the Dragonchain Architecture Document.

Economic Scaling

An interesting feature of Dragonchain’s network consensus is its economics and scarcity model. Since Dragon Net nodes (L2-L4) are independent staking nodes, deployment to cloud platforms would allow any of these nodes to scale to take on a large percentage of the verification work. This is great for scalability, but not good for the economy, because there is no scarcity, and pricing would develop a downward spiral and result in fewer verification nodes. For this reason, Dragonchain uses TIME as scarcity.
TIME is calculated as the number of Dragons held, multiplied by the number of days held. TIME influences the user’s access to features within the Dragonchain ecosystem. It takes into account both the Dragon balance and length of time each Dragon is held. TIME is staked by users against every verification node and dictates how much of the transaction fees are awarded to each participating node for every block.
TIME also dictates the transaction fee itself for the business node. TIME is staked against a business node to set a deterministic transaction fee level (see transaction fee table below in Cost section). This is very interesting in a discussion about scaling because it guarantees independence for business implementation. No matter how much traffic appears on the entire network, a business is guaranteed to not see an increased transaction fee rate.

Scaled Deployment

Dragonchain uses Docker and Kubernetes to allow the use of best practices traditional system scaling. Dragonchain offers managed nodes with an easy to use web based console interface. The user may also deploy a Dragonchain node within their own datacenter or favorite cloud platform. Users have deployed Dragonchain nodes on-prem on Amazon AWS, Google Cloud, MS Azure, and other hosting platforms around the world. Any executable code, anything you can write, can be written into a smart contract. This flexibility is what allows us to say that developers with no blockchain experience can use any code language to access the benefits of blockchain. Customers have used NodeJS, Python, Java, and even BASH shell script to write smart contracts on Dragonchain.
With Docker containers, we achieve better separation of concerns, faster deployment, higher reliability, and lower response times.
We chose Kubernetes for its self-healing features, ability to run multiple services on one server, and its large and thriving development community. It is resilient, scalable, and automated. OpenFaaS allows us to package smart contracts as Docker images for easy deployment.
Contract deployment time is now bounded only by the size of the Docker image being deployed but remains fast even for reasonably large images. We also take advantage of Docker’s flexibility and its ability to support any language that can run on x86 architecture. Any image, public or private, can be run as a smart contract using Dragonchain.

Flexibility in Scaling

Dragonchain’s architecture considers interoperability and integration as key features. From inception, we had a goal to increase adoption via integration with real business use cases and traditional systems.
We envision the ability for Reddit, in the future, to be able to integrate alternate content storage platforms or other financial services along with the token.
  • LBRY - To allow users to deploy content natively to LBRY
  • MakerDAO to allow users to lend small amounts backed by their Reddit community points.
  • STORJ/SIA to allow decentralized on chain storage of portions of content. These integrations or any other are relatively easy to integrate on Dragonchain with an Interchain implementation.

Cost

Cost estimates (on-chain and off-chain) For the purpose of this proposal, we assume that all transactions are on chain (posts, replies, and votes).
On the Dragonchain network, transaction costs are deterministic/predictable. By staking TIME on the business node (as described above) Reddit can reduce transaction costs to as low as $0.0000025 per transaction.
Dragonchain Fees Table

Getting Started

How to run it
Building on Dragonchain is simple and requires no blockchain experience. Spin up a business node (L1) in our managed environment (AWS), run it in your own cloud environment, or on-prem in your own datacenter. Clear documentation will walk you through the steps of spinning up your first Dragonchain Level 1 Business node.
Getting started is easy...
  1. Download Dragonchain’s dctl
  2. Input three commands into a terminal
  3. Build an image
  4. Run it
More information can be found in our Get started documents.

Architecture
Dragonchain is an open source hybrid platform. Through Dragon Net, each chain combines the power of a public blockchain (like Ethereum) with the privacy of a private blockchain.
Dragonchain organizes its network into five separate levels. A Level 1, or business node, is a totally private blockchain only accessible through the use of public/private keypairs. All business logic, including smart contracts, can be executed on this node directly and added to the chain.
After creating a block, the Level 1 business node broadcasts a version stripped of sensitive private data to Dragon Net. Three Level 2 Validating nodes validate the transaction based on guidelines determined from the business. A Level 3 Diversity node checks that the level 2 nodes are from a diverse array of locations. A Level 4 Notary node, hosted by a KYC partner, then signs the validation record received from the Level 3 node. The transaction hash is ledgered to the Level 5 public chain to take advantage of the hash power of massive public networks.
Dragon Net can be thought of as a “blockchain of blockchains”, where every level is a complete private blockchain. Because an L1 can send to multiple nodes on a single level, proof of existence is distributed among many places in the network. Eventually, proof of existence reaches level 5 and is published on a public network.

API Documentation

APIs (on chain & off)

SDK Source

Nobody’s Perfect

Known issues or tradeoffs
  • Dragonchain is open source and even though the platform is easy enough for developers to code in any language they are comfortable with, we do not have so large a developer community as Ethereum. We would like to see the Ethereum developer community (and any other communities) become familiar with our SDK’s, our solutions, and our platform, to unlock the full potential of our Ethereum Interchain. Long ago we decided to prioritize both Bitcoin and Ethereum Interchains. We envision an ecosystem that encompasses different projects to give developers the ability to take full advantage of all the opportunities blockchain offers to create decentralized solutions not only for Reddit but for all of our current platforms and systems. We believe that together we will take the adoption of blockchain further. We currently have additional Interchain with Ethereum Classic. We look forward to Interchain with other blockchains in the future. We invite all blockchains projects who believe in decentralization and security to Interchain with Dragonchain.
  • While we only have 700 nodes compared to 8,000 Ethereum and 10,000 Bitcoin nodes. We harness those 18,000 nodes to scale to extremely high levels of security. See Dragonchain metrics.
  • Some may consider the centralization of Dragonchain’s business nodes as an issue at first glance, however, the model is by design to protect business data. We do not consider this a drawback as these nodes can make any, none, or all data public. Depending upon the implementation, every subreddit could have control of its own business node, for potential business and enterprise offerings, bringing new alternative revenue streams to Reddit.

Costs and resources

Summary of cost & resource information for both on-chain & off-chain components used in the PoC, as well as cost & resource estimates for further scaling. If your PoC is not on mainnet, make note of any mainnet caveats (such as congestion issues).
Every transaction on the PoC system had a transaction fee of $0.0001 (one-hundredth of a cent USD). At 256MM transactions, the demo cost $25,600. With current operational fees, the same demonstration would cost $640 USD.
For the demonstration, to achieve throughput to mimic a worldwide payments network, we modeled several clients in AWS and 4-5 business nodes to handle the traffic. The business nodes were tuned to handle higher throughput by adjusting memory and machine footprint on AWS. This flexibility is valuable to implementing a system such as envisioned by Reddit. Given that Reddit’s daily traffic (posts, replies, and votes) is less than half that of our demo, we would expect that the entire Reddit system could be handled on 2-5 business nodes using right-sized containers on AWS or similar environments.
Verification was accomplished on the operational Dragon Net network with over 700 independently owned verification nodes running around the world at no cost to the business other than paid transaction fees.

Requirements

Scaling

This PoC should scale to the numbers below with minimal costs (both on & off-chain). There should also be a clear path to supporting hundreds of millions of users.
Over a 5 day period, your scaling PoC should be able to handle:
*100,000 point claims (minting & distributing points) *25,000 subscriptions *75,000 one-off points burning *100,000 transfers
During Dragonchain’s 24 hour demo, the above required numbers were reached within the first few minutes.
Reddit’s total activity is 9000% more than Ethereum’s total transaction level. Even if you do not include votes, it is still 700% more than Ethereum’s current volume. Dragonchain has demonstrated that it can handle 250 million transactions a day, and it’s architecture allows for multiple systems to work at that level simultaneously. In our PoC, we demonstrate double the full capacity of Reddit, and every transaction was proven all the way to Bitcoin and Ethereum.
Reddit Scaling on Ethereum

Decentralization

Solutions should not depend on any single third-party provider. We prefer solutions that do not depend on specific entities such as Reddit or another provider, and solutions with no single point of control or failure in off-chain components but recognize there are numerous trade-offs to consider
Dragonchain’s architecture calls for a hybrid approach. Private business nodes hold the sensitive data while the validation and verification of transactions for the business are decentralized within seconds and secured to public blockchains within 10 minutes to 2 hours. Nodes could potentially be controlled by owners of individual subreddits for more organic decentralization.
  • Billing is currently centralized - there is a path to federation and decentralization of a scaled billing solution.
  • Operational multi-cloud
  • Operational on-premises capabilities
  • Operational deployment to any datacenter
  • Over 700 independent Community Verification Nodes with proof of ownership
  • Operational Interchain (Interoperable to Bitcoin, Ethereum, and Ethereum Classic, open to more)

Usability Scaling solutions should have a simple end user experience.

Users shouldn't have to maintain any extra state/proofs, regularly monitor activity, keep track of extra keys, or sign anything other than their normal transactions
Dragonchain and its customers have demonstrated extraordinary usability as a feature in many applications, where users do not need to know that the system is backed by a live blockchain. Lyceum is one of these examples, where the progress of academy courses is being tracked, and successful completion of courses is rewarded with certificates on chain. Our @Save_The_Tweet bot is popular on Twitter. When used with one of the following hashtags - #please, #blockchain, #ThankYou, or #eternalize the tweet is saved through Eternal to multiple blockchains. A proof report is available for future reference. Other examples in use are DEN, our decentralized social media platform, and our console, where users can track their node rewards, view their TIME, and operate a business node.
Examples:

Transactions complete in a reasonable amount of time (seconds or minutes, not hours or days)
All transactions are immediately usable on chain by the system. A transaction begins the path to decentralization at the conclusion of a 5-second block when it gets distributed across 5 separate community run nodes. Full decentralization occurs within 10 minutes to 2 hours depending on which interchain (Bitcoin, Ethereum, or Ethereum Classic) the transaction hits first. Within approximately 2 hours, the combined hash power of all interchained blockchains secures the transaction.

Free to use for end users (no gas fees, or fixed/minimal fees that Reddit can pay on their behalf)
With transaction pricing as low as $0.0000025 per transaction, it may be considered reasonable for Reddit to cover transaction fees for users.
All of Reddit's Transactions on Blockchain (month)
Community points can be earned by users and distributed directly to their Reddit account in batch (as per Reddit minting plan), and allow users to withdraw rewards to their Ethereum wallet whenever they wish. Withdrawal fees can be paid by either user or Reddit. This model has been operating inside the Dragonchain system since 2018, and many security and financial compliance features can be optionally added. We feel that this capability greatly enhances user experience because it is seamless to a regular user without cryptocurrency experience, yet flexible to a tech savvy user. With regard to currency or token transactions, these would occur on the Reddit network, verified to BTC and ETH. These transactions would incur the $0.0000025 transaction fee. To estimate this fee we use the monthly active Reddit users statista with a 60% adoption rate and an estimated 10 transactions per month average resulting in an approximate $720 cost across the system. Reddit could feasibly incur all associated internal network charges (mining/minting, transfer, burn) as these are very low and controllable fees.
Reddit Internal Token Transaction Fees

Reddit Ethereum Token Transaction Fees
When we consider further the Ethereum fees that might be incurred, we have a few choices for a solution.
  1. Offload all Ethereum transaction fees (user withdrawals) to interested users as they wish to withdraw tokens for external use or sale.
  2. Cover Ethereum transaction fees by aggregating them on a timed schedule. Users would request withdrawal (from Reddit or individual subreddits), and they would be transacted on the Ethereum network every hour (or some other schedule).
  3. In a combination of the above, customers could cover aggregated fees.
  4. Integrate with alternate Ethereum roll up solutions or other proposals to aggregate minting and distribution transactions onto Ethereum.

Bonus Points

Users should be able to view their balances & transactions via a blockchain explorer-style interface
From interfaces for users who have no knowledge of blockchain technology to users who are well versed in blockchain terms such as those present in a typical block explorer, a system powered by Dragonchain has flexibility on how to provide balances and transaction data to users. Transactions can be made viewable in an Eternal Proof Report, which displays raw data along with TIME staking information and traceability all the way to Bitcoin, Ethereum, and every other Interchained network. The report shows fields such as transaction ID, timestamp, block ID, multiple verifications, and Interchain proof. See example here.
Node payouts within the Dragonchain console are listed in chronological order and can be further seen in either Dragons or USD. See example here.
In our social media platform, Dragon Den, users can see, in real-time, their NRG and MTR balances. See example here.
A new influencer app powered by Dragonchain, Raiinmaker, breaks down data into a user friendly interface that shows coin portfolio, redeemed rewards, and social scores per campaign. See example here.

Exiting is fast & simple
Withdrawing funds on Dragonchain’s console requires three clicks, however, withdrawal scenarios with more enhanced security features per Reddit’s discretion are obtainable.

Interoperability Compatibility with third party apps (wallets/contracts/etc) is necessary.
Proven interoperability at scale that surpasses the required specifications. Our entire platform consists of interoperable blockchains connected to each other and traditional systems. APIs are well documented. Third party permissions are possible with a simple smart contract without the end user being aware. No need to learn any specialized proprietary language. Any code base (not subsets) is usable within a Docker container. Interoperable with any blockchain or traditional APIs. We’ve witnessed relatively complex systems built by engineers with no blockchain or cryptocurrency experience. We’ve also demonstrated the creation of smart contracts within minutes built with BASH shell and Node.js. Please see our source code and API documentation.

Scaling solutions should be extensible and allow third parties to build on top of it Open source and extensible
APIs should be well documented and stable

Documentation should be clear and complete
For full documentation, explore our docs, SDK’s, Github repo’s, architecture documents, original Disney documentation, and other links or resources provided in this proposal.

Third-party permissionless integrations should be possible & straightforward Smart contracts are Docker based, can be written in any language, use full language (not subsets), and can therefore be integrated with any system including traditional system APIs. Simple is better. Learning an uncommon or proprietary language should not be necessary.
Advanced knowledge of mathematics, cryptography, or L2 scaling should not be required. Compatibility with common utilities & toolchains is expected.
Dragonchain business nodes and smart contracts leverage Docker to allow the use of literally any language or executable code. No proprietary language is necessary. We’ve witnessed relatively complex systems built by engineers with no blockchain or cryptocurrency experience. We’ve also demonstrated the creation of smart contracts within minutes built with BASH shell and Node.js.

Bonus

Bonus Points: Show us how it works. Do you have an idea for a cool new use case for Community Points? Build it!

TIME

Community points could be awarded to Reddit users based upon TIME too, whereas the longer someone is part of a subreddit, the more community points someone naturally gained, even if not actively commenting or sharing new posts. A daily login could be required for these community points to be credited. This grants awards to readers too and incentivizes readers to create an account on Reddit if they browse the website often. This concept could also be leveraged to provide some level of reputation based upon duration and consistency of contribution to a community subreddit.

Dragon Den

Dragonchain has already built a social media platform that harnesses community involvement. Dragon Den is a decentralized community built on the Dragonchain blockchain platform. Dragon Den is Dragonchain’s answer to fake news, trolling, and censorship. It incentivizes the creation and evaluation of quality content within communities. It could be described as being a shareholder of a subreddit or Reddit in its entirety. The more your subreddit is thriving, the more rewarding it will be. Den is currently in a public beta and in active development, though the real token economy is not live yet. There are different tokens for various purposes. Two tokens are Lair Ownership Rights (LOR) and Lair Ownership Tokens (LOT). LOT is a non-fungible token for ownership of a specific Lair. LOT will only be created and converted from LOR.
Energy (NRG) and Matter (MTR) work jointly. Your MTR determines how much NRG you receive in a 24-hour period. Providing quality content, or evaluating content will earn MTR.

Security. Users have full ownership & control of their points.
All community points awarded based upon any type of activity or gift, are secured and provable to all Interchain networks (currently BTC, ETH, ETC). Users are free to spend and withdraw their points as they please, depending on the features Reddit wants to bring into production.

Balances and transactions cannot be forged, manipulated, or blocked by Reddit or anyone else
Users can withdraw their balance to their ERC20 wallet, directly through Reddit. Reddit can cover the fees on their behalf, or the user covers this with a portion of their balance.

Users should own their points and be able to get on-chain ERC20 tokens without permission from anyone else
Through our console users can withdraw their ERC20 rewards. This can be achieved on Reddit too. Here is a walkthrough of our console, though this does not show the quick withdrawal functionality, a user can withdraw at any time. https://www.youtube.com/watch?v=aNlTMxnfVHw

Points should be recoverable to on-chain ERC20 tokens even if all third-parties involved go offline
If necessary, signed transactions from the Reddit system (e.g. Reddit + Subreddit) can be sent to the Ethereum smart contract for minting.

A public, third-party review attesting to the soundness of the design should be available
To our knowledge, at least two large corporations, including a top 3 accounting firm, have conducted positive reviews. These reviews have never been made public, as Dragonchain did not pay or contract for these studies to be released.

Bonus points
Public, third-party implementation review available or in progress
See above

Compatibility with HSMs & hardware wallets
For the purpose of this proposal, all tokenization would be on the Ethereum network using standard token contracts and as such, would be able to leverage all hardware wallet and Ethereum ecosystem services.

Other Considerations

Minting/distributing tokens is not performed by Reddit directly
This operation can be automated by smart contract on Ethereum. Subreddits can if desired have a role to play.

One off point burning, as well as recurring, non-interactive point burning (for subreddit memberships) should be possible and scalable
This is possible and scalable with interaction between Dragonchain Reddit system and Ethereum token contract(s).

Fully open-source solutions are strongly preferred
Dragonchain is fully open source (see section on Disney release after conclusion).

Conclusion

Whether it is today, or in the future, we would like to work together to bring secure flexibility to the highest standards. It is our hope to be considered by Ethereum, Reddit, and other integrative solutions so we may further discuss the possibilities of implementation. In our public demonstration, 256 million transactions were handled in our operational network on chain in 24 hours, for the low cost of $25K, which if run today would cost $625. Dragonchain’s interoperable foundation provides the atmosphere necessary to implement a frictionless community points system. Thank you for your consideration of our proposal. We look forward to working with the community to make something great!

Disney Releases Blockchain Platform as Open Source

The team at Disney created the Disney Private Blockchain Platform. The system was a hybrid interoperable blockchain platform for ledgering and smart contract development geared toward solving problems with blockchain adoption and usability. All objective evaluation would consider the team’s output a success. We released a list of use cases that we explored in some capacity at Disney, and our input on blockchain standardization as part of our participation in the W3C Blockchain Community Group.
https://lists.w3.org/Archives/Public/public-blockchain/2016May/0052.html

Open Source

In 2016, Roets proposed to release the platform as open source to spread the technology outside of Disney, as others within the W3C group were interested in the solutions that had been created inside of Disney.
Following a long process, step by step, the team met requirements for release. Among the requirements, the team had to:
  • Obtain VP support and approval for the release
  • Verify ownership of the software to be released
  • Verify that no proprietary content would be released
  • Convince the organization that there was a value to the open source community
  • Convince the organization that there was a value to Disney
  • Offer the plan for ongoing maintenance of the project outside of Disney
  • Itemize competing projects
  • Verify no conflict of interest
  • Preferred license
  • Change the project name to not use the name Disney, any Disney character, or any other associated IP - proposed Dragonchain - approved
  • Obtain legal approval
  • Approval from corporate, parks, and other business units
  • Approval from multiple Disney patent groups Copyright holder defined by Disney (Disney Connected and Advanced Technologies)
  • Trademark searches conducted for the selected name Dragonchain
  • Obtain IT security approval
  • Manual review of OSS components conducted
  • OWASP Dependency and Vulnerability Check Conducted
  • Obtain technical (software) approval
  • Offer management, process, and financial plans for the maintenance of the project.
  • Meet list of items to be addressed before release
  • Remove all Disney project references and scripts
  • Create a public distribution list for email communications
  • Remove Roets’ direct and internal contact information
  • Create public Slack channel and move from Disney slack channels
  • Create proper labels for issue tracking
  • Rename internal private Github repository
  • Add informative description to Github page
  • Expand README.md with more specific information
  • Add information beyond current “Blockchains are Magic”
  • Add getting started sections and info on cloning/forking the project
  • Add installation details
  • Add uninstall process
  • Add unit, functional, and integration test information
  • Detail how to contribute and get involved
  • Describe the git workflow that the project will use
  • Move to public, non-Disney git repository (Github or Bitbucket)
  • Obtain Disney Open Source Committee approval for release
On top of meeting the above criteria, as part of the process, the maintainer of the project had to receive the codebase on their own personal email and create accounts for maintenance (e.g. Github) with non-Disney accounts. Given the fact that the project spanned multiple business units, Roets was individually responsible for its ongoing maintenance. Because of this, he proposed in the open source application to create a non-profit organization to hold the IP and maintain the project. This was approved by Disney.
The Disney Open Source Committee approved the application known as OSSRELEASE-10, and the code was released on October 2, 2016. Disney decided to not issue a press release.
Original OSSRELASE-10 document

Dragonchain Foundation

The Dragonchain Foundation was created on January 17, 2017. https://den.social/l/Dragonchain/24130078352e485d96d2125082151cf0/dragonchain-and-disney/
submitted by j0j0r0 to ethereum [link] [comments]

Why i’m bullish on Zilliqa (long read)

Edit: TL;DR added in the comments
 
Hey all, I've been researching coins since 2017 and have gone through 100s of them in the last 3 years. I got introduced to blockchain via Bitcoin of course, analyzed Ethereum thereafter and from that moment I have a keen interest in smart contact platforms. I’m passionate about Ethereum but I find Zilliqa to have a better risk-reward ratio. Especially because Zilliqa has found an elegant balance between being secure, decentralized and scalable in my opinion.
 
Below I post my analysis of why from all the coins I went through I’m most bullish on Zilliqa (yes I went through Tezos, EOS, NEO, VeChain, Harmony, Algorand, Cardano etc.). Note that this is not investment advice and although it's a thorough analysis there is obviously some bias involved. Looking forward to what you all think!
 
Fun fact: the name Zilliqa is a play on ‘silica’ silicon dioxide which means “Silicon for the high-throughput consensus computer.”
 
This post is divided into (i) Technology, (ii) Business & Partnerships, and (iii) Marketing & Community. I’ve tried to make the technology part readable for a broad audience. If you’ve ever tried understanding the inner workings of Bitcoin and Ethereum you should be able to grasp most parts. Otherwise, just skim through and once you are zoning out head to the next part.
 
Technology and some more:
 
Introduction
 
The technology is one of the main reasons why I’m so bullish on Zilliqa. First thing you see on their website is: “Zilliqa is a high-performance, high-security blockchain platform for enterprises and next-generation applications.” These are some bold statements.
 
Before we deep dive into the technology let’s take a step back in time first as they have quite the history. The initial research paper from which Zilliqa originated dates back to August 2016: Elastico: A Secure Sharding Protocol For Open Blockchains where Loi Luu (Kyber Network) is one of the co-authors. Other ideas that led to the development of what Zilliqa has become today are: Bitcoin-NG, collective signing CoSi, ByzCoin and Omniledger.
 
The technical white paper was made public in August 2017 and since then they have achieved everything stated in the white paper and also created their own open source intermediate level smart contract language called Scilla (functional programming language similar to OCaml) too.
 
Mainnet is live since the end of January 2019 with daily transaction rates growing continuously. About a week ago mainnet reached 5 million transactions, 500.000+ addresses in total along with 2400 nodes keeping the network decentralized and secure. Circulating supply is nearing 11 billion and currently only mining rewards are left. The maximum supply is 21 billion with annual inflation being 7.13% currently and will only decrease with time.
 
Zilliqa realized early on that the usage of public cryptocurrencies and smart contracts were increasing but decentralized, secure, and scalable alternatives were lacking in the crypto space. They proposed to apply sharding onto a public smart contract blockchain where the transaction rate increases almost linear with the increase in the amount of nodes. More nodes = higher transaction throughput and increased decentralization. Sharding comes in many forms and Zilliqa uses network-, transaction- and computational sharding. Network sharding opens up the possibility of using transaction- and computational sharding on top. Zilliqa does not use state sharding for now. We’ll come back to this later.
 
Before we continue dissecting how Zilliqa achieves such from a technological standpoint it’s good to keep in mind that a blockchain being decentralised and secure and scalable is still one of the main hurdles in allowing widespread usage of decentralised networks. In my opinion this needs to be solved first before blockchains can get to the point where they can create and add large scale value. So I invite you to read the next section to grasp the underlying fundamentals. Because after all these premises need to be true otherwise there isn’t a fundamental case to be bullish on Zilliqa, right?
 
Down the rabbit hole
 
How have they achieved this? Let’s define the basics first: key players on Zilliqa are the users and the miners. A user is anybody who uses the blockchain to transfer funds or run smart contracts. Miners are the (shard) nodes in the network who run the consensus protocol and get rewarded for their service in Zillings (ZIL). The mining network is divided into several smaller networks called shards, which is also referred to as ‘network sharding’. Miners subsequently are randomly assigned to a shard by another set of miners called DS (Directory Service) nodes. The regular shards process transactions and the outputs of these shards are eventually combined by the DS shard as they reach consensus on the final state. More on how these DS shards reach consensus (via pBFT) will be explained later on.
 
The Zilliqa network produces two types of blocks: DS blocks and Tx blocks. One DS Block consists of 100 Tx Blocks. And as previously mentioned there are two types of nodes concerned with reaching consensus: shard nodes and DS nodes. Becoming a shard node or DS node is being defined by the result of a PoW cycle (Ethash) at the beginning of the DS Block. All candidate mining nodes compete with each other and run the PoW (Proof-of-Work) cycle for 60 seconds and the submissions achieving the highest difficulty will be allowed on the network. And to put it in perspective: the average difficulty for one DS node is ~ 2 Th/s equaling 2.000.000 Mh/s or 55 thousand+ GeForce GTX 1070 / 8 GB GPUs at 35.4 Mh/s. Each DS Block 10 new DS nodes are allowed. And a shard node needs to provide around 8.53 GH/s currently (around 240 GTX 1070s). Dual mining ETH/ETC and ZIL is possible and can be done via mining software such as Phoenix and Claymore. There are pools and if you have large amounts of hashing power (Ethash) available you could mine solo.
 
The PoW cycle of 60 seconds is a peak performance and acts as an entry ticket to the network. The entry ticket is called a sybil resistance mechanism and makes it incredibly hard for adversaries to spawn lots of identities and manipulate the network with these identities. And after every 100 Tx Blocks which corresponds to roughly 1,5 hour this PoW process repeats. In between these 1,5 hour, no PoW needs to be done meaning Zilliqa’s energy consumption to keep the network secure is low. For more detailed information on how mining works click here.
Okay, hats off to you. You have made it this far. Before we go any deeper down the rabbit hole we first must understand why Zilliqa goes through all of the above technicalities and understand a bit more what a blockchain on a more fundamental level is. Because the core of Zilliqa’s consensus protocol relies on the usage of pBFT (practical Byzantine Fault Tolerance) we need to know more about state machines and their function. Navigate to Viewblock, a Zilliqa block explorer, and just come back to this article. We will use this site to navigate through a few concepts.
 
We have established that Zilliqa is a public and distributed blockchain. Meaning that everyone with an internet connection can send ZILs, trigger smart contracts, etc. and there is no central authority who fully controls the network. Zilliqa and other public and distributed blockchains (like Bitcoin and Ethereum) can also be defined as state machines.
 
Taking the liberty of paraphrasing examples and definitions given by Samuel Brooks’ medium article, he describes the definition of a blockchain (like Zilliqa) as: “A peer-to-peer, append-only datastore that uses consensus to synchronize cryptographically-secure data”.
 
Next, he states that: "blockchains are fundamentally systems for managing valid state transitions”. For some more context, I recommend reading the whole medium article to get a better grasp of the definitions and understanding of state machines. Nevertheless, let’s try to simplify and compile it into a single paragraph. Take traffic lights as an example: all its states (red, amber, and green) are predefined, all possible outcomes are known and it doesn’t matter if you encounter the traffic light today or tomorrow. It will still behave the same. Managing the states of a traffic light can be done by triggering a sensor on the road or pushing a button resulting in one traffic lights’ state going from green to red (via amber) and another light from red to green.
 
With public blockchains like Zilliqa, this isn’t so straightforward and simple. It started with block #1 almost 1,5 years ago and every 45 seconds or so a new block linked to the previous block is being added. Resulting in a chain of blocks with transactions in it that everyone can verify from block #1 to the current #647.000+ block. The state is ever changing and the states it can find itself in are infinite. And while the traffic light might work together in tandem with various other traffic lights, it’s rather insignificant comparing it to a public blockchain. Because Zilliqa consists of 2400 nodes who need to work together to achieve consensus on what the latest valid state is while some of these nodes may have latency or broadcast issues, drop offline or are deliberately trying to attack the network, etc.
 
Now go back to the Viewblock page take a look at the amount of transaction, addresses, block and DS height and then hit refresh. Obviously as expected you see new incremented values on one or all parameters. And how did the Zilliqa blockchain manage to transition from a previous valid state to the latest valid state? By using pBFT to reach consensus on the latest valid state.
 
After having obtained the entry ticket, miners execute pBFT to reach consensus on the ever-changing state of the blockchain. pBFT requires a series of network communication between nodes, and as such there is no GPU involved (but CPU). Resulting in the total energy consumed to keep the blockchain secure, decentralized and scalable being low.
 
pBFT stands for practical Byzantine Fault Tolerance and is an optimization on the Byzantine Fault Tolerant algorithm. To quote Blockonomi: “In the context of distributed systems, Byzantine Fault Tolerance is the ability of a distributed computer network to function as desired and correctly reach a sufficient consensus despite malicious components (nodes) of the system failing or propagating incorrect information to other peers.” Zilliqa is such a distributed computer network and depends on the honesty of the nodes (shard and DS) to reach consensus and to continuously update the state with the latest block. If pBFT is a new term for you I can highly recommend the Blockonomi article.
 
The idea of pBFT was introduced in 1999 - one of the authors even won a Turing award for it - and it is well researched and applied in various blockchains and distributed systems nowadays. If you want more advanced information than the Blockonomi link provides click here. And if you’re in between Blockonomi and the University of Singapore read the Zilliqa Design Story Part 2 dating from October 2017.
Quoting from the Zilliqa tech whitepaper: “pBFT relies upon a correct leader (which is randomly selected) to begin each phase and proceed when the sufficient majority exists. In case the leader is byzantine it can stall the entire consensus protocol. To address this challenge, pBFT offers a view change protocol to replace the byzantine leader with another one.”
 
pBFT can tolerate ⅓ of the nodes being dishonest (offline counts as Byzantine = dishonest) and the consensus protocol will function without stalling or hiccups. Once there are more than ⅓ of dishonest nodes but no more than ⅔ the network will be stalled and a view change will be triggered to elect a new DS leader. Only when more than ⅔ of the nodes are dishonest (66%) double-spend attacks become possible.
 
If the network stalls no transactions can be processed and one has to wait until a new honest leader has been elected. When the mainnet was just launched and in its early phases, view changes happened regularly. As of today the last stalling of the network - and view change being triggered - was at the end of October 2019.
 
Another benefit of using pBFT for consensus besides low energy is the immediate finality it provides. Once your transaction is included in a block and the block is added to the chain it’s done. Lastly, take a look at this article where three types of finality are being defined: probabilistic, absolute and economic finality. Zilliqa falls under the absolute finality (just like Tendermint for example). Although lengthy already we skipped through some of the inner workings from Zilliqa’s consensus: read the Zilliqa Design Story Part 3 and you will be close to having a complete picture on it. Enough about PoW, sybil resistance mechanism, pBFT, etc. Another thing we haven’t looked at yet is the amount of decentralization.
 
Decentralisation
 
Currently, there are four shards, each one of them consisting of 600 nodes. 1 shard with 600 so-called DS nodes (Directory Service - they need to achieve a higher difficulty than shard nodes) and 1800 shard nodes of which 250 are shard guards (centralized nodes controlled by the team). The amount of shard guards has been steadily declining from 1200 in January 2019 to 250 as of May 2020. On the Viewblock statistics, you can see that many of the nodes are being located in the US but those are only the (CPU parts of the) shard nodes who perform pBFT. There is no data from where the PoW sources are coming. And when the Zilliqa blockchain starts reaching its transaction capacity limit, a network upgrade needs to be executed to lift the current cap of maximum 2400 nodes to allow more nodes and formation of more shards which will allow to network to keep on scaling according to demand.
Besides shard nodes there are also seed nodes. The main role of seed nodes is to serve as direct access points (for end-users and clients) to the core Zilliqa network that validates transactions. Seed nodes consolidate transaction requests and forward these to the lookup nodes (another type of nodes) for distribution to the shards in the network. Seed nodes also maintain the entire transaction history and the global state of the blockchain which is needed to provide services such as block explorers. Seed nodes in the Zilliqa network are comparable to Infura on Ethereum.
 
The seed nodes were first only operated by Zilliqa themselves, exchanges and Viewblock. Operators of seed nodes like exchanges had no incentive to open them for the greater public. They were centralised at first. Decentralisation at the seed nodes level has been steadily rolled out since March 2020 ( Zilliqa Improvement Proposal 3 ). Currently the amount of seed nodes is being increased, they are public-facing and at the same time PoS is applied to incentivize seed node operators and make it possible for ZIL holders to stake and earn passive yields. Important distinction: seed nodes are not involved with consensus! That is still PoW as entry ticket and pBFT for the actual consensus.
 
5% of the block rewards are being assigned to seed nodes (from the beginning in 2019) and those are being used to pay out ZIL stakers. The 5% block rewards with an annual yield of 10.03% translate to roughly 610 MM ZILs in total that can be staked. Exchanges use the custodial variant of staking and wallets like Moonlet will use the non-custodial version (starting in Q3 2020). Staking is being done by sending ZILs to a smart contract created by Zilliqa and audited by Quantstamp.
 
With a high amount of DS; shard nodes and seed nodes becoming more decentralized too, Zilliqa qualifies for the label of decentralized in my opinion.
 
Smart contracts
 
Let me start by saying I’m not a developer and my programming skills are quite limited. So I‘m taking the ELI5 route (maybe 12) but if you are familiar with Javascript, Solidity or specifically OCaml please head straight to Scilla - read the docs to get a good initial grasp of how Zilliqa’s smart contract language Scilla works and if you ask yourself “why another programming language?” check this article. And if you want to play around with some sample contracts in an IDE click here. The faucet can be found here. And more information on architecture, dapp development and API can be found on the Developer Portal.
If you are more into listening and watching: check this recent webinar explaining Zilliqa and Scilla. Link is time-stamped so you’ll start right away with a platform introduction, roadmap 2020 and afterwards a proper Scilla introduction.
 
Generalized: programming languages can be divided into being ‘object-oriented’ or ‘functional’. Here is an ELI5 given by software development academy: * “all programs have two basic components, data – what the program knows – and behavior – what the program can do with that data. So object-oriented programming states that combining data and related behaviors in one place, is called “object”, which makes it easier to understand how a particular program works. On the other hand, functional programming argues that data and behavior are different things and should be separated to ensure their clarity.” *
 
Scilla is on the functional side and shares similarities with OCaml: OCaml is a general-purpose programming language with an emphasis on expressiveness and safety. It has an advanced type system that helps catch your mistakes without getting in your way. It's used in environments where a single mistake can cost millions and speed matters, is supported by an active community, and has a rich set of libraries and development tools. For all its power, OCaml is also pretty simple, which is one reason it's often used as a teaching language.
 
Scilla is blockchain agnostic, can be implemented onto other blockchains as well, is recognized by academics and won a so-called Distinguished Artifact Award award at the end of last year.
 
One of the reasons why the Zilliqa team decided to create their own programming language focused on preventing smart contract vulnerabilities is that adding logic on a blockchain, programming, means that you cannot afford to make mistakes. Otherwise, it could cost you. It’s all great and fun blockchains being immutable but updating your code because you found a bug isn’t the same as with a regular web application for example. And with smart contracts, it inherently involves cryptocurrencies in some form thus value.
 
Another difference with programming languages on a blockchain is gas. Every transaction you do on a smart contract platform like Zilliqa or Ethereum costs gas. With gas you basically pay for computational costs. Sending a ZIL from address A to address B costs 0.001 ZIL currently. Smart contracts are more complex, often involve various functions and require more gas (if gas is a new concept click here ).
 
So with Scilla, similar to Solidity, you need to make sure that “every function in your smart contract will run as expected without hitting gas limits. An improper resource analysis may lead to situations where funds may get stuck simply because a part of the smart contract code cannot be executed due to gas limits. Such constraints are not present in traditional software systems”. Scilla design story part 1
 
Some examples of smart contract issues you’d want to avoid are: leaking funds, ‘unexpected changes to critical state variables’ (example: someone other than you setting his or her address as the owner of the smart contract after creation) or simply killing a contract.
 
Scilla also allows for formal verification. Wikipedia to the rescue: In the context of hardware and software systems, formal verification is the act of proving or disproving the correctness of intended algorithms underlying a system with respect to a certain formal specification or property, using formal methods of mathematics.
 
Formal verification can be helpful in proving the correctness of systems such as: cryptographic protocols, combinational circuits, digital circuits with internal memory, and software expressed as source code.
 
Scilla is being developed hand-in-hand with formalization of its semantics and its embedding into the Coq proof assistant — a state-of-the art tool for mechanized proofs about properties of programs.”
 
Simply put, with Scilla and accompanying tooling developers can be mathematically sure and proof that the smart contract they’ve written does what he or she intends it to do.
 
Smart contract on a sharded environment and state sharding
 
There is one more topic I’d like to touch on: smart contract execution in a sharded environment (and what is the effect of state sharding). This is a complex topic. I’m not able to explain it any easier than what is posted here. But I will try to compress the post into something easy to digest.
 
Earlier on we have established that Zilliqa can process transactions in parallel due to network sharding. This is where the linear scalability comes from. We can define simple transactions: a transaction from address A to B (Category 1), a transaction where a user interacts with one smart contract (Category 2) and the most complex ones where triggering a transaction results in multiple smart contracts being involved (Category 3). The shards are able to process transactions on their own without interference of the other shards. With Category 1 transactions that is doable, with Category 2 transactions sometimes if that address is in the same shard as the smart contract but with Category 3 you definitely need communication between the shards. Solving that requires to make a set of communication rules the protocol needs to follow in order to process all transactions in a generalised fashion.
 
And this is where the downsides of state sharding comes in currently. All shards in Zilliqa have access to the complete state. Yes the state size (0.1 GB at the moment) grows and all of the nodes need to store it but it also means that they don’t need to shop around for information available on other shards. Requiring more communication and adding more complexity. Computer science knowledge and/or developer knowledge required links if you want to dig further: Scilla - language grammar Scilla - Foundations for Verifiable Decentralised Computations on a Blockchain Gas Accounting NUS x Zilliqa: Smart contract language workshop
 
Easier to follow links on programming Scilla https://learnscilla.com/home Ivan on Tech
 
Roadmap / Zilliqa 2.0
 
There is no strict defined roadmap but here are topics being worked on. And via the Zilliqa website there is also more information on the projects they are working on.
 
Business & Partnerships
 
It’s not only technology in which Zilliqa seems to be excelling as their ecosystem has been expanding and starting to grow rapidly. The project is on a mission to provide OpenFinance (OpFi) to the world and Singapore is the right place to be due to its progressive regulations and futuristic thinking. Singapore has taken a proactive approach towards cryptocurrencies by introducing the Payment Services Act 2019 (PS Act). Among other things, the PS Act will regulate intermediaries dealing with certain cryptocurrencies, with a particular focus on consumer protection and anti-money laundering. It will also provide a stable regulatory licensing and operating framework for cryptocurrency entities, effectively covering all crypto businesses and exchanges based in Singapore. According to PWC 82% of the surveyed executives in Singapore reported blockchain initiatives underway and 13% of them have already brought the initiatives live to the market. There is also an increasing list of organizations that are starting to provide digital payment services. Moreover, Singaporean blockchain developers Building Cities Beyond has recently created an innovation $15 million grant to encourage development on its ecosystem. This all suggests that Singapore tries to position itself as (one of) the leading blockchain hubs in the world.
 
Zilliqa seems to already take advantage of this and recently helped launch Hg Exchange on their platform, together with financial institutions PhillipCapital, PrimePartners and Fundnel. Hg Exchange, which is now approved by the Monetary Authority of Singapore (MAS), uses smart contracts to represent digital assets. Through Hg Exchange financial institutions worldwide can use Zilliqa's safe-by-design smart contracts to enable the trading of private equities. For example, think of companies such as Grab, Airbnb, SpaceX that are not available for public trading right now. Hg Exchange will allow investors to buy shares of private companies & unicorns and capture their value before an IPO. Anquan, the main company behind Zilliqa, has also recently announced that they became a partner and shareholder in TEN31 Bank, which is a fully regulated bank allowing for tokenization of assets and is aiming to bridge the gap between conventional banking and the blockchain world. If STOs, the tokenization of assets, and equity trading will continue to increase, then Zilliqa’s public blockchain would be the ideal candidate due to its strategic positioning, partnerships, regulatory compliance and the technology that is being built on top of it.
 
What is also very encouraging is their focus on banking the un(der)banked. They are launching a stablecoin basket starting with XSGD. As many of you know, stablecoins are currently mostly used for trading. However, Zilliqa is actively trying to broaden the use case of stablecoins. I recommend everybody to read this text that Amrit Kumar wrote (one of the co-founders). These stablecoins will be integrated in the traditional markets and bridge the gap between the crypto world and the traditional world. This could potentially revolutionize and legitimise the crypto space if retailers and companies will for example start to use stablecoins for payments or remittances, instead of it solely being used for trading.
 
Zilliqa also released their DeFi strategic roadmap (dating November 2019) which seems to be aligning well with their OpFi strategy. A non-custodial DEX is coming to Zilliqa made by Switcheo which allows cross-chain trading (atomic swaps) between ETH, EOS and ZIL based tokens. They also signed a Memorandum of Understanding for a (soon to be announced) USD stablecoin. And as Zilliqa is all about regulations and being compliant, I’m speculating on it to be a regulated USD stablecoin. Furthermore, XSGD is already created and visible on block explorer and XIDR (Indonesian Stablecoin) is also coming soon via StraitsX. Here also an overview of the Tech Stack for Financial Applications from September 2019. Further quoting Amrit Kumar on this:
 
There are two basic building blocks in DeFi/OpFi though: 1) stablecoins as you need a non-volatile currency to get access to this market and 2) a dex to be able to trade all these financial assets. The rest are built on top of these blocks.
 
So far, together with our partners and community, we have worked on developing these building blocks with XSGD as a stablecoin. We are working on bringing a USD-backed stablecoin as well. We will soon have a decentralised exchange developed by Switcheo. And with HGX going live, we are also venturing into the tokenization space. More to come in the future.”
 
Additionally, they also have this ZILHive initiative that injects capital into projects. There have been already 6 waves of various teams working on infrastructure, innovation and research, and they are not from ASEAN or Singapore only but global: see Grantees breakdown by country. Over 60 project teams from over 20 countries have contributed to Zilliqa's ecosystem. This includes individuals and teams developing wallets, explorers, developer toolkits, smart contract testing frameworks, dapps, etc. As some of you may know, Unstoppable Domains (UD) blew up when they launched on Zilliqa. UD aims to replace cryptocurrency addresses with a human-readable name and allows for uncensorable websites. Zilliqa will probably be the only one able to handle all these transactions onchain due to ability to scale and its resulting low fees which is why the UD team launched this on Zilliqa in the first place. Furthermore, Zilliqa also has a strong emphasis on security, compliance, and privacy, which is why they partnered with companies like Elliptic, ChainSecurity (part of PwC Switzerland), and Incognito. Their sister company Aqilliz (Zilliqa spelled backwards) focuses on revolutionizing the digital advertising space and is doing interesting things like using Zilliqa to track outdoor digital ads with companies like Foodpanda.
 
Zilliqa is listed on nearly all major exchanges, having several different fiat-gateways and recently have been added to Binance’s margin trading and futures trading with really good volume. They also have a very impressive team with good credentials and experience. They don't just have “tech people”. They have a mix of tech people, business people, marketeers, scientists, and more. Naturally, it's good to have a mix of people with different skill sets if you work in the crypto space.
 
Marketing & Community
 
Zilliqa has a very strong community. If you just follow their Twitter their engagement is much higher for a coin that has approximately 80k followers. They also have been ‘coin of the day’ by LunarCrush many times. LunarCrush tracks real-time cryptocurrency value and social data. According to their data, it seems Zilliqa has a more fundamental and deeper understanding of marketing and community engagement than almost all other coins. While almost all coins have been a bit frozen in the last months, Zilliqa seems to be on its own bull run. It was somewhere in the 100s a few months ago and is currently ranked #46 on CoinGecko. Their official Telegram also has over 20k people and is very active, and their community channel which is over 7k now is more active and larger than many other official channels. Their local communities also seem to be growing.
 
Moreover, their community started ‘Zillacracy’ together with the Zilliqa core team ( see www.zillacracy.com ). It’s a community-run initiative where people from all over the world are now helping with marketing and development on Zilliqa. Since its launch in February 2020 they have been doing a lot and will also run their own non-custodial seed node for staking. This seed node will also allow them to start generating revenue for them to become a self sustaining entity that could potentially scale up to become a decentralized company working in parallel with the Zilliqa core team. Comparing it to all the other smart contract platforms (e.g. Cardano, EOS, Tezos etc.) they don't seem to have started a similar initiative (correct me if I’m wrong though). This suggests in my opinion that these other smart contract platforms do not fully understand how to utilize the ‘power of the community’. This is something you cannot ‘buy with money’ and gives many projects in the space a disadvantage.
 
Zilliqa also released two social products called SocialPay and Zeeves. SocialPay allows users to earn ZILs while tweeting with a specific hashtag. They have recently used it in partnership with the Singapore Red Cross for a marketing campaign after their initial pilot program. It seems like a very valuable social product with a good use case. I can see a lot of traditional companies entering the space through this product, which they seem to suggest will happen. Tokenizing hashtags with smart contracts to get network effect is a very smart and innovative idea.
 
Regarding Zeeves, this is a tipping bot for Telegram. They already have 1000s of signups and they plan to keep upgrading it for more and more people to use it (e.g. they recently have added a quiz features). They also use it during AMAs to reward people in real-time. It’s a very smart approach to grow their communities and get familiar with ZIL. I can see this becoming very big on Telegram. This tool suggests, again, that the Zilliqa team has a deeper understanding of what the crypto space and community needs and is good at finding the right innovative tools to grow and scale.
 
To be honest, I haven’t covered everything (i’m also reaching the character limited haha). So many updates happening lately that it's hard to keep up, such as the International Monetary Fund mentioning Zilliqa in their report, custodial and non-custodial Staking, Binance Margin, Futures, Widget, entering the Indian market, and more. The Head of Marketing Colin Miles has also released this as an overview of what is coming next. And last but not least, Vitalik Buterin has been mentioning Zilliqa lately acknowledging Zilliqa and mentioning that both projects have a lot of room to grow. There is much more info of course and a good part of it has been served to you on a silver platter. I invite you to continue researching by yourself :-) And if you have any comments or questions please post here!
submitted by haveyouheardaboutit to CryptoCurrency [link] [comments]

Sobre Tibia, gold farmers y un caso de ayuda y éxito PT2. Son muy buenos consejos de cómo comenzar a programar profesionalmente

Una vez más, reconocimiento al autor original de los post International-Unit-8
Hello,

I have gotten so many replies and messages since my last post in this thread, that I can't answer them all individually. Previous topic:

https://www.reddit.com/TibiaMMO/comments/h8tu5u/a_great_tip_for_brazilians_venezuelans_and_othe

It has been shared on multiple subreddits so I have no idea where to even post this. But I'd like to come up with a follow-up thread with some more information. The internet is the most powerful tool that mankind has ever invented. You have the ability to reach thousands, millions and even billions of people with just a computer and some internet access.

If you're on this subreddit, chances are you're already playing Tibia and you already have a computer and internet access. It doesn't need to be the best internet, but as long as websites will load (eventually) you are good to go.

In this topic I will go more in-depth on web development and software engineering. If you have a very slow internet connection, you may want to look into web development instead of software development. An application/software is much heavier (larger file size) than a website. And most developer jobs require that you send and download files, back and forth, between you and your company's server. So if you feel like your internet is too slow to send a lot of files - do not worry! There are plenty of jobs.

First, I will go through some more details on how to learn web development and software development. After that, I will list a few other kinds of jobs that you can do remotely. These types of jobs can be done from anywhere in the world as long as you have internet access.



Part 1: Some languages you should learn

What is web development? Well, it can be a lot of things. You perhaps make websites for shops/restaurants/hair dressers/dentists, or you work for a big company and work on their web application, like Outlook, Discord or Spotify (which can all be accessed via a browser: their web app). You can also work with design and user experience, instead of programming. Being a web developer can mean so many different things, it's impossible to name them all. But most web developers are just developers: they program. They make websites, and they either sell the websites to companies (as a consultant) or you work full/part-time for a company.

I can not provide in-depth information about every single thing, but I can give you some pointers. The very basics any web developer should know is this:

HTML (HyperText Markup Language) - it's what almost all websites use as a foundation. This is not a programming language, but it is a markup language. If you want to build websites, you pretty much have to know this language. Don't worry though, it is easy. Not so much to learn. You can learn all about it in a few weeks.

CSS (Cascading Style Sheets) - it's what will add colors and shapes to your website. If you want to focus more on design (also known as front end development) then this is where you want to gain a lot of knowledge.

Python - A very simple language to learn. This language is very often the first programming language that developers start using. You can use it for a lot of things. This language is used in the back of a lot of websites. Google has been using Python for years and still is. It's great for web scraping and making web requests. If you want a language to practice your algorithms, then this language is awesome.

PHP - This used to be a very popular language, but not so much these days. However, it is very good to know how this works because it's very simple to learn and also very functional in some cases. If you want to transmit or withdraw information from a database to your website, then this (in combination with SQL) is a great way to do so. Whenever you make a login system or a contact form, the data must be sent somehow to a recipient or a database. PHP will help you do that. It is a server-side language, which means it will run in the back of the website.

SQL - To be able to communicate with databases (for example: save data, update data, or insert data) you can use different languages for that. But SQL is probably the most widely used language for this. It is basically just a bunch of commands that you tell your website or app to do. If you have a web shop for example, you will need a database to store all your product information in. You can for example use MySQL as your database and then use the SQL language to extract data from your database and publish it as a list of products on your website.

JavaScript - Perhaps the most powerful language at the moment. Anyone who is good at JavaScript will be able to learn most other modern programming languages. In recent years, the demand for good JavaScript developers has skyrocketed. It's because more applications are becoming web based, and JavaScript is probably among the most useful languages to use. You can use it for so many things. Previously JavaScript was only being run on the client side of the website (that means in the user's browser). But in recent years, there has been massive development of this language and you are now able to build servers, connect to databases and do very powerful web applications using just this language. A great tutorial for JavaScript was made by Tony Alicea: https://www.youtube.com/watch?v=Bv_5Zv5c-Ts This video is "just" 3.5 hours, but it's the intro. There is a much longer version of it, and you can download it for free if you search for it. Just find it as a torrent and watch it. It's probably the best tutorial I have seen for JavaScript.

C# - It's pronounced as "C Sharp". This language has been dominating the software engineering market for decades at this point. Everyone loves it. It's relatively easy to learn and you can build a lot of stuff in C#. It's very much like JavaScript, but focuses more on application development rather than website development. I would however try to avoid learning this language if you have very slow internet, since you will most likely be sending a ton of files back and forth. But if application (computer & phone) is your thing, then this language is great. There are so many tutorials on this, but there is 1 channel on YouTube which teaches a lot of the basics in C# (and many other languages) and that channel is called ProgrammingKnowledge. Sure, his C# videos may be old now but most of it is still relevant and useful. You will learn a lot by watching his videos. It's always good to start from the beginning and then when you're familiar with that, you can learn more about the recent updates in C#. https://www.youtube.com/watch?v=V2A8tcb_YyY&list=PLS1QulWo1RIZrmdggzEKbhnfvCMHtT-sA

Java - This is pretty much 90% identical to C# as I wrote above. Widely used, relatively easy to learn the basics and there's plenty of jobs. If you like making android apps, this language is for you.



Part 2: Technologies and useful tools

To become a web developer you will need a few tools. You need a text editor, a FTP client, a SSH client and some other things. Also a good browser.

Text editor: Visual Studio Code, Atom, Sublime Text, Brackets - There are many different text editors but at the moment, I highly recommend Visual Studio Code. It has so many built-in features it's honestly the only thing you may need.Don't forget to install Notepad++ as well - this very basic editor is so handy when you just quickly need to edit some files.

File archiving: WinRar, 7-Zip - You need some way of archiving projects and send it to your customer or employer. These are basic tools anyone should use. I personally use Winrar.

FTP (File Transfer Protocol): FileZilla - This tool will allow you to connect to your website's file manager and upload your files to it. There are many tools for connecting to an FTP server but this is the most popular one, it's simple and it works great.

VPS (Virtual Private Server): Amazon Web Services, Google Cloud - If you want to practice building web applications or want to host your own website as a fun project, it's great to use a VPS for that. Both Amazon and Google offers 365 days of free VPS usage. All you need is a credit card. However, they will not charge you, as long as you stay below the free tier limit. A VPS is basically a remote computer that you can connect to. I highly recommend that, if you have a slow internet connection. Those VPS-servers (by Amazon and Google) usually have 500mbit/s internet speed, which is faster than most countries in the world. You simply connect to them via Remote Desktop, or by SSH. Depending on what type of server you are using (Windows or Linux).

SSH (Secure Shell): Solar-PuTTY, PuTTY - If you for example have a web server where you store applications and files, a great way to connect to it is by using SSH. PuTTY is pretty much the standard when it comes to SSH clients. But I really love the version created by SolarWinds. When you download that one, do not enter your personal details. Their sales people will call you and haunt you! Haha.

File Searching: Agent Ransack - When you have many files and try to locate a specific document or file, you may want to use something like Agent Ransack. Much faster than the traditional search feature in Windows and it is much more accurate.

IDE / Code Editor: Visual Studio - Great tool to use when you want to create applications in C# for example. Do not confuse this with Visual Studio Code. These are two very different tools. This tool (Visual Studio) is more designed for Windows applications. Not just websites. I only recommend getting it if you plan to make programs for Windows.

Web host & domain: NameCheap, Epik, SiteGround - If you develop websites on your own, or maybe want to create a portfolio website, you will need a domain name and web hosting. I have personally used all of these 3 and they are very cheap. NameCheap has some of the cheapest domains and great web hosting for a low price. Their support is also great. Same with SiteGround. And if you want to buy a domain anonymously (with Bitcoin for example), then you can use Epik. Low prices and great customer service on all these 3 websites.

Web Server: XAMPP, Nginx - If you plan to practice PHP, you will need to have a web server on your local computer. If you have Windows, I would highly recommend installing XAMPP (Apache). It is very easy to use for beginners. If you're on Linux, I would recommend Nginx. Also check our PhpMyAdmin if you want to quickly setup a MySQL database locally.Bonus tip: If you use Visual Studio Code to create websites in HTML, CSS and JavaScript: then install the extension "live server" and you can run your applications on a live server without setting it up yourself. Tutorial: https://www.youtube.com/watch?v=WzE0yqwbdgU

Web Browser: Mozilla Firefox, Microsoft Edge Insider, Google Chrome - You need one of the latest web browsers to create websites these days. Since I prefer privacy over functionality, I've always loved Firefox. But recently, Microsoft has been improving its new version of Edge a lot (based on Chromium) and it's also very popular. If you want all your personal details to be saved and have good tools for web development, then use Google Chrome. Don't forget to utilize the built-in developer tools. You can access it in any of these browsers by pressing F12.



Other things you may want to look into:

Web services, SSL certificates, Search Engine Optimization, Databases, API, Algorithms, Data Structures



Part 3: Learning platforms

https://www.youtube.com/

https://www.w3schools.com/

https://leetcode.com/

https://stackoverflow.com/



If you want to learn in-depth about algorithms, data structures and more. Then you can take a look at the curriculum of the top-tier universities of USA. Such as: UC Berkeley, Harvard and MIT. These courses are very hard and are specifically for people who want to become experts in software engineering. You can enroll some of them for free, like the one on Harvard. And by having a such diploma (which costs $90 extra) can get you a lot of job opportunities. You can enroll those courses if you want, but it can have a fee. But just take a look at what they are studying and try do their exercises, that is 100% free. Get the knowledge. It's mostly on video too! These course below are the very same courses that many of the engineers at Facebook, Google, Amazon, Apple, Netflix, Uber, AirBnb, Twitter, LinkedIn, Microsoft, etc. has taken. It's what majority of people in Silicon Valley studied. And it's among the best classes that you can take. These course are held by some of the world's best professors in IT.



UC Berkeley: CS 61a & CS 61b:

https://inst.eecs.berkeley.edu/~cs61a/fa19/

Video playlist here: https://www.youtube.com/watch?v=0_LryzvBxFw&list=PL6BsET-8jgYVAaK0jGVTWr9R5g7kSMQ8i

https://inst.eecs.berkeley.edu/~cs61b/fa19/

Videos: https://www.youtube.com/channel/UCNBSbBTFx8nFahcQyZOYOgQ



Harvard University: CS50 (free enrollment --- 90$ to get a certificate).

https://online-learning.harvard.edu/course/cs50-introduction-computer-science



MIT (Massachusetts Institute of Technology): 6.006

https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-006-introduction-to-algorithms-fall-2011/

Held by Erik Demaine. One of the best - if not THE best - professor at MIT. Just look at this resume. It's almost 50 pages long! https://erikdemaine.org/cv.pdf



Part 4: Finding jobs

https://www.linkedin.com/

https://marketing.hackerrank.com/

https://www.glassdoor.com/index.htm

Facebook groups for web developers, freelancing, remote work, etc.

Portfolio / Code Sharing / Source Control:

https://github.com/



Part 5: Other types of jobs you can work with (remotely) - with/without coding experience

SEO (Search Engine Optimization)

Translations (Spanish/Portuguese, etc.)

Affiliate Marketing (look into Clickbank.com - and use Facebook Ads to promote products)

Design (web design, photo design, etc.)

Copywriting (write sales letters for companies)

Database manager (monitor and administrate a company's database)

YouTube - make YouTube videos to gain views. Views = Money.

Dropshipping (use Shopify.com for example) and sell products in a webshop. Benefit with dropshipping is that you don't personally store the products.

Customer support

more...? Banking, economics, etc.



You can find information about all of the things I have mentioned by using YouTube or Google search.

Hope it helps.



And I hope that in 1 year, there will be at least some new web developers in Brazil, Venezuela and other countries in South America.
submitted by jesuskater to memezuela [link] [comments]

DFINITY Research Report

DFINITY Research Report
Author: Gamals Ahmed, CoinEx Business Ambassador
ABSTRACT
The DFINITY blockchain computer provides a secure, performant and flexible consensus mechanism. At its core, DFINITY contains a decentralized randomness beacon, which acts as a verifiable random function (VRF) that produces a stream of outputs over time. The novel technique behind the beacon relies on the existence of a unique-deterministic, non-interactive, DKG-friendly threshold signatures scheme. The only known examples of such a scheme are pairing-based and derived from BLS.
The DFINITY blockchain is layered on top of the DFINITY beacon and uses the beacon as its source of randomness for leader selection and leader ranking. A “weight” is attributed to a chain based on the ranks of the leaders who propose the blocks in the chain, and that weight is used to select between competing chains. The DFINITY blockchain is layered on top of the DFINITY beacon and uses the beacon as its source of randomness for leader selection and leader ranking blockchain is further hardened by a notarization process which dramatically improves the time to finality and eliminates the nothing-at-stake and selfish mining attacks.
DFINITY consensus algorithm is made to scale through continuous quorum selections driven by the random beacon. In practice, DFINITY achieves block times of a few seconds and transaction finality after only two confirmations. The system gracefully handles temporary losses of network synchrony including network splits, while it is provably secure under synchrony.

1.INTRODUCTION

DFINITY is building a new kind of public decentralized cloud computing resource. The company’s platform uses blockchain technology which is aimed at building a new kind of public decentralized cloud computing resource with unlimited capacity, performance and algorithmic governance shared by the world, with the capability to power autonomous self-updating software systems, enabling organizations to design and deploy custom-tailored cloud computing projects, thereby reducing enterprise IT system costs by 90%.
DFINITY aims to explore new territory and prove that the blockchain opportunity is far broader and deeper than anyone has hitherto realized, unlocking the opportunity with powerful new crypto.
Although a standalone project, DFINITY is not maximalist minded and is a great supporter of Ethereum.
The DFINITY blockchain computer provides a secure, performant and flexible consensus mechanism. At its core, DFINITY contains a decentralized randomness beacon, which acts as a verifiable random function (VRF) that produces a stream of outputs over time. The novel technique behind the beacon relies on the existence of a unique-deterministic, non-interactive, DKG-friendly threshold signatures scheme. The only known examples of such a scheme are pairing-based and derived from BLS.
DFINITY’s consensus mechanism has four layers: notary (provides fast finality guarantees to clients and external observers), blockchain (builds a blockchain from validated transactions via the Probabilistic Slot Protocol driven by the random beacon), random beacon (provides the source of randomness for all higher layers like smart contract applications), and identity (provides a registry of all clients).
DFINITY’s consensus mechanism has four layers

Figure1: DFINITY’s consensus mechanism layers
1. Identity layer:
Active participants in the DFINITY Network are called clients. Where clients are registered with permanent identities under a pseudonym. Moreover, DFINITY supports open membership by providing a protocol for registering new clients by depositing a stake with an insurance period. This is the responsibility of the first layer.
2. Random Beacon layer:
Provides the source of randomness (VRF) for all higher layers including ap- plications (smart contracts). The random beacon in the second layer is an unbiasable, verifiable random function (VRF) that is produced jointly by registered clients. Each random output of the VRF is unpredictable by anyone until just before it becomes avail- able to everyone. This is a key technology of the DFINITY system, which relies on a threshold signature scheme with the properties of uniqueness and non-interactivity.

https://preview.redd.it/hkcf53ic05e51.jpg?width=441&format=pjpg&auto=webp&s=44d45c9602ee630705ce92902b8a8379201d8111
3. Blockchain layer:
The third layer deploys the “probabilistic slot protocol” (PSP). This protocol ranks the clients for each height of the chain, in an order that is derived determin- istically from the unbiased output of the random beacon for that height. A weight is then assigned to block proposals based on the proposer’s rank such that blocks from clients at the top of the list receive a higher weight. Forks are resolved by giving favor to the “heaviest” chain in terms of accumulated block weight — quite sim- ilar to how traditional proof-of-work consensus is based on the highest accumulated amount of work.
The first advantage of the PSP protocol is that the ranking is available instantaneously, which allows for a predictable, constant block time. The second advantage is that there is always a single highest-ranked client, which allows for a homogenous network bandwidth utilization. Instead, a race between clients would favor a usage in bursts.
4. Notarization layer:
Provides fast finality guarantees to clients and external observers. DFINITY deploys the novel technique of block notarization in its fourth layer to speed up finality. A notarization is a threshold signature under a block created jointly by registered clients. Only notarized blocks can be included in a chain. Of all RSA-based alternatives exist but suffer from an impracticality of setting up the thresh- old keys without a trusted dealer.
DFINITY achieves its high speed and short block times exactly because notarization is not full consensus.
DFINITY does not suffer from selfish mining attack or a problem nothing at stake because the authentication step is impossible for the opponent to build and maintain a series of linked and trusted blocks in secret.
DFINITY’s consensus is designed to operate on a network of millions of clients. To en- able scalability to this extent, the random beacon and notarization protocols are designed such as that they can be safely and efficiently delegated to a committee

1.1 OVERVIEW ABOUT DFINITY

DFINITY is a blockchain-based cloud-computing project that aims to develop an open, public network, referred to as the “internet computer,” to host the next generation of software and data. and it is a decentralized and non-proprietary network to run the next generation of mega-applications. It dubbed this public network “Cloud 3.0”.
DFINITY is a third generation virtual blockchain network that sets out to function as an “intelligent decentralised cloud,”¹ strongly focused on delivering a viable corporate cloud solution. The DFINITY project is overseen, supported and promoted by DFINITY Stiftung a not-for-profit foundation based in Zug, Switzerland.
DFINITY is a decentralized network design whose protocols generate a reliable “virtual blockchain computer” running on top of a peer-to-peer network upon which software can be installed and can operate in the tamperproof mode of smart contracts.
DFINITY introduces algorithmic governance in the form of a “Blockchain Nervous System” that can protect users from attacks and help restart broken systems, dynamically optimize network security and efficiency, upgrade the protocol and mitigate misuse of the platform, for example by those wishing to run illegal or immoral systems.
DFINITY is an Ethereum-compatible smart contract platform that is implementing some revolutionary ideas to address blockchain performance, scaling, and governance. Whereas
DFINITY could pose a credible threat to Ethereum’s extinction, the project is pursuing a coevolutionary strategy by contributing funding and effort to Ethereum projects and freely offering their technology to Ethereum for adoption. DFINITY has labeled itself Ethereum’s “crazy sister” to express it’s close genetic resemblance to Ethereum, differentiated by its obsession with performance and neuron-inspired governance model.
Dfinity raised $61 million from Andreesen Horowitz and Polychain Capital in a February 2018 funding round. At the time, Dfinity said it wanted to create an “internet computer” to cut the costs of running cloud-based business applications. A further $102 million funding round in August 2018 brought the project’s total funding to $195 million.
In May 2018, Dfinity announced plans to distribute around $35 million worth of Dfinity tokens in an airdrop. It was part of the company’s plan to create a “Cloud 3.0.” Because of regulatory concerns, none of the tokens went to US residents.
DFINITY be broadening and strengthening the EVM ecosystem by giving applications a choice of platforms with different characteristics. However, if DFINITY succeeds in delivering a fully EVM-compatible smart contract platform with higher transaction throughput, faster confirmation times, and governance mechanisms that can resolve public disputes without causing community splits, then it will represent a clearly superior choice for deploying new applications and, as its network effects grow, an attractive place to bring existing ones. Of course the challenge for DFINITY will be to deliver on these promises while meeting the security demands of a public chain with significant value at risk.

1.1.1 DFINITY FUTURE

  • DFINITY aims to explore new blockchain territory related to the original goals of the Ethereum project and is sometimes considered “Ethereum’s crazy sister.”
  • DFINITY is developing blockchain-based infrastructure to support a new style of the internet (akin to Ethereum’s “World Computer”), one in which the internet itself will support software applications and data rather than various cloud hosting providers.
  • The project suggests this reinvented software platform can simplify the development of new software systems, reduce the human capital needed to maintain and secure data, and preserve user data privacy.
  • Dfinity aims to reduce the costs of cloud services by creating a decentralized “internet computer” which may launch in 2020
  • Dfinity claims transactions on its network are finalized in 3–5 seconds, compared to 1 hour for Bitcoin and 10 minutes for Ethereum.

1.1.2 DFINITY’S VISION

DFINITY’s vision is its new internet infrastructure can support a wide variety of end-user and enterprise applications. Social media, messaging, search, storage, and peer-to-peer Internet interactions are all examples of functionalities that DFINITY plans to host atop its public Web 3.0 cloud-like computing resource. In order to provide the transaction and data capacity necessary to support this ambitious vision, DFINITY features a unique consensus model (dubbed Threshold Relay) and algorithmic governance via its Blockchain Nervous System (BNS) — sometimes also referred to as the Network Nervous System or NNS.

1.2 DFINITY COMMUNITY

The DFINITY community brings people and organizations together to learn and collaborate on products that help steward the next-generation of internet software and services. The Internet Computer allows developers to take on the monopolization of the internet, and return the internet back to its free and open roots. We’re committed to connecting those who believe the same through our events, content, and discussions.

https://preview.redd.it/0zv64fzf05e51.png?width=637&format=png&auto=webp&s=e2b17365fae3c679a32431062d8e3c00a57673cf

1.3 DFINITY ROADMAP (TIMELINE) February 15, 2017

February 15, 2017
Ethereum based community seed round raises 4M Swiss francs (CHF)
The DFINITY Stiftung, a not-for-profit foundation entity based in Zug, Switzerland, raised the round. The foundation held $10M of assets as of April 2017.
February 8, 2018
Dfinity announces a $61M fundraising round led by Polychain Capital and Andreessen Horowitz
The round $61M round led by Polychain Capital and Andreessen Horowitz, along with an DFINITY Ecosystem Venture Fund which will be used to support projects developing on the DFINITY platform, and an Ethereum based raise in 2017 brings the total funding for the project over $100 million. This is the first cryptocurrency token that Andressen Horowitz has invested in, led by Chris Dixon.
August 2018
Dfinity raises a $102,000,000 venture round from Multicoin Capital, Village Global, Aspect Ventures, Andreessen Horowitz, Polychain Capital, Scalar Capital, Amino Capital and SV Angel.
January 23, 2020
Dfinity launches an open source platform aimed at the social networking giants

2.DFINITY TECHNOLOGY

Dfinity is building what it calls the internet computer, a decentralized technology spread across a network of independent data centers that allows software to run anywhere on the internet rather than in server farms that are increasingly controlled by large firms, such as Amazon Web Services or Google Cloud. This week Dfinity is releasing its software to third-party developers, who it hopes will start making the internet computer’s killer apps. It is planning a public release later this year.
At its core, the DFINITY consensus mechanism is a variation of the Proof of Stake (PoS) model, but offers an alternative to traditional Proof of Work (PoW) and delegated PoS (dPoS) networks. Threshold Relay intends to strike a balance between inefficiencies of decentralized PoW blockchains (generally characterized by slow block times) and the less robust game theory involved in vote delegation (as seen in dPoS blockchains). In DFINITY, a committee of “miners” is randomly selected to add a new block to the chain. An individual miner’s probability of being elected to the committee proposing and computing the next block (or blocks) is proportional to the number of dfinities the miner has staked on the network. Further, a “weight” is attributed to a DFINITY chain based on the ranks of the miners who propose blocks in the chain, and that weight is used to choose between competing chains (i.e. resolve chain forks).
A decentralized random beacon manages the random selection process of temporary block producers. This beacon is a Variable Random Function (VRF), which is a pseudo-random function that provides publicly verifiable proofs of its outputs’ correctness. A core component of the random beacon is the use of Boneh-Lynn-Shacham (BLS) signatures. By leveraging the BLS signature scheme, the DFINITY protocol ensures no actor in the network can determine the outcome of the next random assignment.
Dfinity is introducing a new standard, which it calls the internet computer protocol (ICP). These new rules let developers move software around the internet as well as data. All software needs computers to run on, but with ICP the computers could be anywhere. Instead of running on a dedicated server in Google Cloud, for example, the software would have no fixed physical address, moving between servers owned by independent data centers around the world. “Conceptually, it’s kind of running everywhere,” says Dfinity engineering manager Stanley Jones.
DFINITY also features a native programming language, called ActorScript (name may be subject to change), and a virtual machine for smart contract creation and execution. The new smart contract language is intended to simplify the management of application state for programmers via an orthogonal persistence environment (which means active programs are
not required to retrieve or save their state). All ActorScript contracts are eventually compiled down to WebAssembly instructions so the DFINITY virtual machine layer can execute the logic of applications running on the network. The advantage of using the WebAssembly standard is that all major browsers support it and a variety of programming languages can compile down to Wasm (not just ActorScript).
Dfinity is moving fast. Recently, Dfinity showed off a TikTok clone called CanCan. In January it demoed a LinkedIn-alike called LinkedUp. Neither app is being made public, but they make a convincing case that apps made for the internet computer can rival the real things.

2.1 DFINITY CORE APPLICATIONS

The DFINITY cloud has two core applications:
  1. Enabling the re-engineering of business: DFINITY ambitiously aims to facilitate the re-engineering of mass-market services (such as Web Search, Ridesharing Services, Messaging Services, Social Media, Supply Chain, etc) into open source businesses that leverage autonomous software and decentralised governance systems to operate and update themselves more efficiently.
  2. Enable the re-engineering of enterprise IT systems to reduce costs: DFINITY seeks to re-engineer enterprise IT systems to take advantage of the unique properties that blockchain computer networks provide.
At present, computation on blockchain-based computer networks is far more expensive than traditional, centralised solutions (Amazon Web Services, Microsoft Azure, Google Cloud Platform, etc). Despite increasing computational cost, DFINITY intends to lower net costs “by 90% or more” through reducing the human capital cost associated with sustaining and supporting these services.
Whilst conceptually similar to Ethereum, DFINITY employs original and new cryptography methods and protocols (crypto:3) at the network level, in concert with AI and network-fuelled systemic governance (Blockchain Nervous System — BNS) to facilitate Corporate adoption.
DFINITY recognises that different users value different properties and sees itself as more of a fully compatible extension of the Ethereum ecosystem rather than a competitor of the Ethereum network.
In the future, DFINITY hopes that much of their “new crypto might be used within the Ethereum network and are also working hard on shared technology components.”
As the DFINITY project develops over time, the DFINITY Stiftung foundation intends to steadily increase the BNS’ decision-making responsibilities over time, eventually resulting in the dissolution of its own involvement entirely, once the BNS is sufficiently sophisticated.
DFINITY consensus mechanism is a heavily optimized proof of stake (PoS) model. It places a strong emphasis on transaction finality through implementing a Threshold Relay technique in conjunction with the BLS signature scheme and a notarization method to address many of the problems associated with PoS consensus.

2.2 THRESHOLD RELAY

As a public cloud computing resource, DFINITY targets business applications by substantially reducing cloud computing costs for IT systems. They aim to achieve this with a highly scalable and powerful network with potentially unlimited capacity. The DFINITY platform is chalk full of innovative designs and features like their Blockchain Nervous System (BNS) for algorithmic governance.
One of the primary components of the platform is its novel Threshold Relay Consensus model from which randomness is produced, driving the other systems that the network depends on to operate effectively. The consensus system was first designed for a permissioned participation model but can be paired with any method of Sybil resistance for an open participation model.
“The Threshold Relay is the mechanism by which Dfinity randomly samples replicas into groups, sets the groups (committees) up for threshold operation, chooses the current committee, and relays from one committee to the next is called the threshold relay.”
Threshold Relay consists of four layers (As mentioned previously):
  1. Notary layer, which provides fast finality guarantees to clients and external observers and eliminates nothing-at-stake and selfish mining attacks, providing Sybil attack resistance.
  2. Blockchain layer that builds a blockchain from validated transactions via the Probabilistic Slot Protocol driven by the random beacon.
  3. Random beacon, which as previously covered, provides the source of randomness for all higher layers like the blockchain layer smart contract applications.
  4. Identity layer that provides a registry of all clients.

2.2.1 HOW DOES THRESHOLD RELAY WORK?

Threshold Relay produces an endogenous random beacon, and each new value defines random group(s) of clients that may independently try and form into a “threshold group”. The composition of each group is entirely random such that they can intersect and clients can be presented in multiple groups. In DFINITY, each group is comprised of 400 members. When a group is defined, the members attempt to set up a BLS threshold signature system using a distributed key generation protocol. If they are successful within some fixed number of blocks, they then register the public key (“identity”) created for their group on the global blockchain using a special transaction, such that it will become part of the set of active groups in a following “epoch”. The network begins at “genesis” with some number of predefined groups, one of which is nominated to create a signature on some default value. Such signatures are random values — if they were not then the group’s signatures on messages would be predictable and the threshold signature system insecure — and each random value produced thus is used to select a random successor group. This next group then signs the previous random value to produce a new random value and select another group, relaying between groups ad infinitum and producing a sequence of random values.
In a cryptographic threshold signature system a group can produce a signature on a message upon the cooperation of some minimum threshold of its members, which is set to 51% in the DFINITY network. To produce the threshold signature, group members sign the message
individually (here the preceding group’s threshold signature) creating individual “signature shares” that are then broadcast to other group members. The group threshold signature can be constructed upon combination of a sufficient threshold of signature shares. So for example, if the group size is 400, if the threshold is set at 201 any client that collects that many shares will be able to construct the group’s signature on the message. Other group members can validate each signature share, and any client using the group’s public key can validate the single group threshold signature produced by combining them. The magic of the BLS scheme is that it is “unique and deterministic” meaning that from whatever subset of group members the required number of signature shares are collected, the single threshold signature created is always the same and only a single correct value is possible.
Consequently, the sequence of random values produced is entirely deterministic and unmanipulable, and signatures generated by relaying between groups produces a Verifiable Random Function, or VRF. Although the sequence of random values is pre-determined given some set of participating groups, each new random value can only be produced upon the minimal agreement of a threshold of the current group. Conversely, in order for relaying to stall because a random number was not produced, the number of correct processes must be below the threshold. Thresholds are configured so that this is extremely unlikely. For example, if the group size is set to 400, and the threshold is 201, 200 or more of the processes must become faulty to prevent production. If there are 10,000 processes in the network, of which 3,000 are faulty, the probability this will occur is less than 10e-17.

2.3 DFINITY TOKEN

The DFINITY blockchain also supports a native token, called dfinities (DFN), which perform multiple roles within the network, including:
  1. Fuel for deploying and running smart contracts.
  2. Security deposits (i.e. staking) that enable participation in the BNS governance system.
  3. Security deposits that allow client software or private DFINITY cloud networks to connect to the public network.
Although dfinities will end up being assigned a value by the market, the DFINITY team does not intend for DFN to act as a currency. Instead, the project has envisioned PHI, a “next-generation” crypto-fiat scheme, to act as a stable medium of exchange within the DFINITY ecosystem.
Neuron operators can earn Dfinities by participating in network-wide votes, which could be concerning protocol upgrades, a new economic policy, etc. DFN rewards for participating in the governance system are proportional to the number of tokens staked inside a neuron.

2.4 SCALABILITY

DFINITY is constantly developing with a structure that separates consensus, validation, and storage into separate layers. The storage layer is divided into multiple strings, each of which is responsible for processing transactions that occur in the fragment state. The verification layer is responsible for combining hashes of all fragments in a Merkle-like structure that results in a global state fractionation that is stored in blocks in the top-level chain.

2.5 DFINITY CONSENSUS ALGORITHM

The single most important aspect of the user experience is certainly the time required before a transaction becomes final. This is not solved by a short block time alone — Dfinity’s team also had to reduce the number of confirmations required to a small constant. DFINITY moreover had to provide a provably secure proof-of-stake algorithm that scales to millions of active participants without compromising any bit on decentralization.
Dfinity soon realized that the key to scalability lay in having an unmanipulable source of randomness available. Hence they built a scalable decentralized random beacon, based on what they call the Threshold Relay technique, right into the foundation of the protocol. This strong foundation drives a scalable and fast consensus layer: On top of the beacon runs a blockchain which utilizes notarization by threshold groups to achieve near-instant finality. Details can be found in the overview paper that we are releasing today.
The roots of the DFINITY consensus mechanism date back to 2014 when thair Chief Scientist, Dominic Williams, started to look for more efficient ways to drive large consensus networks. Since then, much research has gone into the protocol and it took several iterations to reach its current design.
For any practical consensus system the difficulty lies in navigating the tight terrain that one is given between the boundaries imposed by theoretical impossibility-results and practical performance limitations.
The first key milestone was the novel Threshold Relay technique for decentralized, deterministic randomness, which is made possible by certain unique characteristics of the BLS signature system. The next breakthrough was the notarization technique, which allows DFINITY consensus to solve the traditional problems that come with proof-of-stake systems. Getting the security proofs sound was the final step before publication.
DFINITY consensus has made the proper trade-offs between the practical side (realistic threat models and security assumptions) and the theoretical side (provable security). Out came a flexible, tunable algorithm, which we expect will establish itself as the best performing proof-of-stake algorithm. In particular, having the built-in random beacon will prove to be indispensable when building out sharding and scalable validation techniques.

2.6 LINKEDUP

The startup has rather cheekily called this “an open version of LinkedIn,” the Microsoft-owned social network for professionals. Unlike LinkedIn, LinkedUp, which runs on any browser, is not owned or controlled by a corporate entity.
LinkedUp is built on Dfinity’s so-called Internet Computer, its name for the platform it is building to distribute the next generation of software and open internet services.
The software is hosted directly on the internet on a Switzerland-based independent data center, but in the concept of the Internet Computer, it could be hosted at your house or mine. The compute power to run the application LinkedUp, in this case — is coming not from Amazon AWS, Google Cloud or Microsoft Azure, but is instead based on the distributed architecture that Dfinity is building.
Specifically, Dfinity notes that when enterprises and developers run their web apps and enterprise systems on the Internet Computer, the content is decentralized across a minimum of four or a maximum of an unlimited number of nodes in Dfinity’s global network of independent data centers.
Dfinity is an open source for LinkedUp to developers for creating other types of open internet services on the architecture it has built.
“Open Social Network for Professional Profiles” suggests that on Dfinity model one can create “Open WhatsApp”, “Open eBay”, “Open Salesforce” or “Open Facebook”.
The tools include a Canister Software Developer Kit and a simple programming language called Motoko that is optimized for Dfinity’s Internet Computer.
“The Internet Computer is conceived as an alternative to the $3.8 trillion legacy IT stack, and empowers the next generation of developers to build a new breed of tamper-proof enterprise software systems and open internet services. We are democratizing software development,” Williams said. “The Bronze release of the Internet Computer provides developers and enterprises a glimpse into the infinite possibilities of building on the Internet Computer — which also reflects the strength of the Dfinity team we have built so far.”
Dfinity says its “Internet Computer Protocol” allows for a new type of software called autonomous software, which can guarantee permanent APIs that cannot be revoked. When all these open internet services (e.g. open versions of WhatsApp, Facebook, eBay, Salesforce, etc.) are combined with other open software and services it creates “mutual network effects” where everyone benefits.
On 1 November, DFINITY has released 13 new public versions of the SDK, to our second major milestone [at WEF Davos] of demoing a decentralized web app called LinkedUp on the Internet Computer. Subsequent milestones towards the public launch of the Internet Computer will involve:
  1. On boarding a global network of independent data centers.
  2. Fully tested economic system.
  3. Fully tested Network Nervous Systems for configuration and upgrades

2.7 WHAT IS MOTOKO?

Motoko is a new software language being developed by the DFINITY Foundation, with an accompanying SDK, that is designed to help the broadest possible audience of developers create reliable and maintainable websites, enterprise systems and internet services on the Internet Computer with ease. By developing the Motoko language, the DFINITY Foundation will ensure that a language that is highly optimized for the new environment is available. However, the Internet Computer can support any number of different software frameworks, and the DFINITY Foundation is also working on SDKs that support the Rust and C languages. Eventually, it is expected there will be many different SDKs that target the Internet Computer.
Full article
submitted by CoinEx_Institution to u/CoinEx_Institution [link] [comments]

Bitcoin JSON-RPC Tutorial 1 Garrison's NCLEX Tutoring - YouTube YouTube Austin Mahone - Why Don't We (Official Music Video) - YouTube Cxlvxn - YouTube

Common operations Listing my bitcoin addresses. Listing the bitcoin addresses in your wallet is easily done via listreceivedbyaddress.It normally lists only addresses which already have received transactions, however you can list all the addresses by setting the first argument to 0, and the second one to true. My Wallet users can interact with their wallet using our JSON RPC api. It is intended to be fully compatible with the original Bitcoind RPC protocol however some method calls are not supported. No Blockchain Download - Save on bandwidth and disk space. No Need to run Bitcoind - Some VPS and shared hosting plans do not allow you to run custom ... Retrieved from "https://en.bitcoin.it/w/index.php?title=Original_Bitcoin_client/API_Calls_list&oldid=1639" Version ,bitcoin-0.7.1-win32-setup.exe' für Windows wurde laut E-Mail von 30.10.2012 am 17. Okt. 2012 veröffentlicht (engl.: released). Downloadquelle beim Herausgeber Sourceforge: Version 0.3.20 wurde für alle unterstützten Plattformen, am 21. Februar 2011 veröffentlicht. Siehe auch. Original Bitcoin client/API calls Liste 服务器中最常见的系统是ubuntu, 我们拿ubuntu来做演示.由于同步全部的区块链,大概需要 200G的空间,记得挂载个大硬盘哦。 在B站上传了一个无声版的视频—— 使用...

[index] [31692] [48376] [32561] [41506] [2337] [19012] [33226] [32882] [47103] [14954]

Bitcoin JSON-RPC Tutorial 1

The official music video for “Why Don’t We” - available everywhere now 🔥 https://lnk.to/am_whydontwe Here's a situation that's been weighing on my brain I kn... Enjoy the videos and music you love, upload original content, and share it all with friends, family, and the world on YouTube. Building Bitcoin Websites - Blockchain API 2 of 2 by m1xolyd1an. 12:03. Building Bitcoin Websites - Working With Blockchain.info JSON Data by m1xolyd1an. 19:36 [Private video] Blockchain Receive ... For tutoring please call 856.777.0840 I am a registered nurse who helps nursing students pass their NCLEX. I have been a nurse since 1997. I have worked in a lot of nursing fields and I truly love ... An introduction to the Bitcoin JSON-RPC tutorial series. BTC: 1NPrfWgJfkANmd1jt88A141PjhiarT8d9U

#